Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

MATeMAtyka 2. Zakres podstawowy i rozszerzony (Zbiór zadań, Nowa Era)

Wykaż, że jeśli (an) jest ciągiem... 4.17 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Ciąg geometryczny i jego suma
Temat ten jest bardzo podobny do obliczania sumy ciągu arytmetycznego, lecz w przypadku ciągu geometrycznego musi wykonać więcej obliczeń.

Jak pamiętamy ciąg to ponumerowane liczby. Dodatkowy wiemy, że ciąg geometryczny to taki gdzie iloraz pomiędzy kolejnymi wyrazami jest zawsze taki sam.

Mamy przykładowy ciąg:

$$a_n=2,4,8,16,32,x$$

Gołym okiem widać, że ciągle jest mnożony przez 2, zatem nasz x będzie wynosić 64, bo $$32*2=64$$

Jednak i tu nie jest tak łatwo jeśli mamy ciąg takiej postaci:

$$a_n=1/3,-1/5,3/{2}5,-9/{25},x$$

Przykład:

Znajdź $$x$$ w ciągu $$a_n=1/3,-1/5,3/{2}5,-9/{25},x$$. Musimy najpierw znaleźć jaki iloraz został tutaj użyty, zatem wprowadźmy wzór na dowolny wyraz ciągu geometrycznego:

$$a_n=a_1×q^(n-1)$$

Podstawmy tu wyraz numer 2:

Czyli $$n=2$$

$$a_2=a_1×q^(2-1)$$

Nasze wyrazy to:

$$a_1=1/3$$

$$a_2=-1/5$$

Podstawiamy do wzoru:

$$a_2=a_1×q^1$$

W celu usunięcia ułamków

$$-1/5=1/3×q$$ $$|×15$$

$$-3=5×q$$ $$|:(-3)$$

$$q=-5/3$$


Obliczmy teraz bez problemu wyraz numer 5:

$$a_5=a_1×q^(5-1)$$

$$a_5=a_1×q^4$$

$$a_5=1/3×(-5/3)^4$$

$$a_5=1/3×-{625}/{81}=-{625}/{243}$$


Ciąg geometryczny ma również własność wyrazu środkowego - kwadrat wyrazu środkowego jest równy iloczynowi wartości sąsiednich wyrazów, czyli:

$$a_{n-1}$$, $$a_n$$, $$a_{n+1}$$ -> trzy kolejne wyrazy

$$a_n^2=a_{n-1}×a_{n+1}$$

 

Suma ciągu geometrycznego


W celu obliczenia sumy ciągu geometrycznego potrzebujemy następujących danych:
  • Pierwszy wyraz: $$a_1$$
  • Ilość wyrazów, których sumę liczymy: $$N$$
  • Iloraz: $$q$$

Wzór na sumę wygląda następująco:

$$S_N={a_1(1-q^N)}/{1-q}$$

Przykład:

Oblicz sumę pierwszych 7 wyrazów ciągu geometrycznego, gdzie ostatni wyraz to $$a_7=81$$, a iloraz to $$q=3$$.

Potrzebujemy podstawy, zatem obliczmy $$a_1$$ z wzoru na dowolny wyraz:

$$a_N=a_1×q^{N-1}$$

$$a_7=a_1×q^6$$

Podstawmy: $$81=a_1×3^6$$

81 również jest potęgą trójki, więc zamiast bawić się w duże liczby zróbmy tak:

$$3^4=a_1×3^6$$ $$|:3^6$$

Z własności dzielenia potęg:

$$3^{-2}=a_1$$

$$1/9=a_1$$

Wiemy, że N=7, bo 7 wyrazów, więc liczymy sumę:

$$S_N={a_1 (1-q^N)}/{1-q}$$

$$S_7={1/9(1-3^7)}/{1-3}$$

$$S_7={1/9(1-3^7)}/{1-3}$$

$$S_7={1/9(-2186)}/{-2}$$

$$S_7={-{2186}/9}/{-2}$$

$$S_7={2186}/{18}$$
 

Uwaga!

Powyższe wzory są zawarte w karcie wzorów.

Wzór na dowolny wyraz jest uniwersalny, działa dla każdego ciągu geometrycznego.
 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom