Matematyka

MATeMAtyka 2. Zakres podstawowy i rozszerzony (Zbiór zadań, Nowa Era)

Wykaż, że podane wyrażenie... 4.38 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

`a) \ (1-2sin^2x)/(2cos^2x-1) = (sin^2x + cos^2x - 2 sin^2x)/(2cos^2x - sin^2x - cos^2x) = (cos^2x -sin^2x)/(cos^2x-sin^2x) = 1` 

 

`b) \ (cos^4 x - sin^4x)/(cos^2x - sin^2x) = ((cos^2x-sin^2x)(cos^2x+sin^2x))/(cos^2x-sin^2x) = cos^2x + sin^2x = 1` 

 

`c) \ (cos^4x + sin^4x)/(1-2sin^2xcos^2x) = (cos^4x + 2 cos^2xsin^2x + sin^4x - 2cos^2xsin^2x)/(1 - 2 sin^2xcos^2x) = ((cos^2x+sin^2x)^2 - 2cos^2xsin^2x)/(1-2sin^2xcos^2x) = (1 - 2cos^2xsin^2x)/(1-2cos^2xsin^2x) =1` 

DYSKUSJA
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Zobacz także
Udostępnij zadanie