Matematyka

Matematyka 5. Zeszyt ćwiczeń cz. 1 (Zeszyt ćwiczeń, WSiP)

Które z podanych wyrażeń ma najmniejszą wartość ... 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Które z podanych wyrażeń ma najmniejszą wartość ...

7
 Zadanie
8
 Zadanie
9
 Zadanie

1
 Zadanie

2
 Zadanie
3
 Zadanie

A. rownanie matematyczne 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dodawanie i odejmowanie ułamków zwykłych

Najważniejszą rzeczą podczas dodawania i odejmowania ułamków zwykłych jest sprowadzenie danych ułamków do wspólnego mianownika.

Aby sprowadzić ułamek do wspólnego mianownika musimy rozszerzyć oba ułamki przez liczbę w taki sposób, aby otrzymać takie same mianowniki, a następnie dodać liczniki, czyli:

$$1/3+3/4=1/3×4/4+3/4×3/3=4/{12}+9/{12}={13}/{12}=1{1}/{12}$$

Wykonaliśmy mnożenie przez 1 w różnych formach ($$4/4$$ oraz $$3/3$$), przez co sprowadziliśmy ułamki do wspólnego mianownika (12), nie zaburzając działania.

Tak samo w przypadku odejmowania.

$$1 1/5-3/4=6/5-3/4=6/5×4/4-3/4×5/5={24}/{20}-{15}/{20}={9}/{20}$$

Pamiętaj, aby zawsze skracać ułamki!

Dodawanie ułamków zwykłych
  1. Dodawanie ułamków o jednakowych mianownikach – dodajemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$4/7+6/7={10}/7=1 3/7$$

      Uwaga

    Gdy w wyniku dodania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości (jak w przykładzie powyższym).

    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę (jak w przykładzie poniżej).

  2. Dodawanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy dodawanie.

    Przykład:

    • $$3/10+ 1/5=3/{10}+ {1•2}/{5•2}=3/{10}+ 2/{10}=5/{10}={5÷5}/{10÷5}=1/2$$
       
  3. Dodawanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy dodawanie ułamków o jednakowych mianownikach.

      $$2 1/3+ 1 1/3= {2•3+1}/3+{1•3+1}/3=7/3+4/3={11}/3=3 2/3$$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3+ 1 1/3= 2 + 1/3+ 1 + 1/3= 3 + 2/3= 3 2/3$$
       
  4. Dodawanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy dodawanie.

      $$2 1/3+ 1 1/2= {2•3+1}/3+{1•2+1}/2=7/3+3/2={7•2}/{3•2}+{3•3}/{2•3}={14}/6 + 9/6={23}/6=3 5/6$$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/3+ 1 1/2= 2 + 1/3+ 1 + 1/2= 3 + 1/3+ 1/2= 3 + {1•2}/{3•2}+ {1•3}/{2•3}= 3 + 2/6+ 3/6= 3 + 5/6= 3 5/6$$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom