Matematyka

Matematyka 5. Zeszyt ćwiczeń cz. 1 (Zeszyt ćwiczeń, WSiP)

Trasę wyścigu podzielono na cztery etapy ... 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Trasę wyścigu podzielono na cztery etapy ...

1
 Zadanie
2
 Zadanie
3
 Zadanie
5
 Zadanie

6
 Zadanie

I etap: rownanie matematyczne 

II etap: rownanie matematyczne 

III etap: rownanie matematyczne 

IV etap: rownanie matematyczne 

Odp. Najkrótszy jest etap IV, a najdłuższy - etap III.

DYSKUSJA
user avatar
Gość

3 stycznia 2018
dziekuję
user avatar
Julia

10 grudnia 2017
Dziękuję :)
user avatar
Gość

28 listopada 2017
wielkie thx ziomeczku <3
user avatar
Gość

15 stycznia 2017
dziękuje
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Sprowadzanie ułamków do wspólnego mianownika

Ułamki o różnych mianownikach można sprowadzić do postaci o jednakowych mianownikach.
W tym celu wystarczy rozszerzyć lub skrócić te ułamki (lub jeden z nich) tak, aby w mianowniku otrzymać taka samą liczbę (czyli właśnie ułamki o takich samych mianownikach).

Wspólnym mianownikiem może być wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, lub najmniejsza wspólna wielokrotność danych mianowników.
Przykład: Sprowadźmy do wspólnego mianownika ułamki $$1/{12}$$ i $$3/{16}$$.

  1. I sposób
    Wspólnym mianownikiem może być wspólna wielokrotność liczb, będących mianownikami danych ułamków, czyli liczba $$12•16= 192$$.

    W tym przypadku rozszerzamy pierwszy ułamek przez 16, a drugi przez 12, tak aby oba ułamki miały ten sam mianownik (równy $$12•16$$).
    Następnie rozszerzamy ułamki przez 16 oraz 12:
    $$1/{12}= {1•16}/{12•16}= {16}/{192}$$
    $$3/{16}= {3•12}/{16•12}= {36}/{192}$$

  2. II sposób
    Wspólnym mianownikiem może być najmniejsza wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, czyli NWW (12, 16).

    nww

    Wspólnym mianownikiem danych ułamków będzie liczba 48.
    $$1/{12}= {48÷12•1}/{48}= 4/{48}$$
    $$3/{16}= {48÷16•3}/{48}= 9/{48}$$

    Lub inaczej: pierwszy ułamek rozszerzamy przez 4 (bo $$12•4=48$$), a drugi przez 3 (bo $$16•3=48$$).
    $$1/{12}={1•4}/{12•4}= 4/{48}$$
    $$3/{16}={3•3}/{16•3}=9/{48}$$

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom