Matematyka

Matematyka poznać. zrozumieć 1.Zakres podstawowy (Zbiór zadań, WSiP)

Wskaż wykres funkcji, który jest symetryczny... 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Wskaż wykres funkcji, który jest symetryczny...

5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie
10
 Zadanie

11
 Zadanie

rownanie matematyczne Gdy funkcja rownanie matematyczne jest symetryczna względem osi rownanie matematyczne to zachodzi rownanie matematyczne 

Wyznaczamy wzór funkcji rownanie matematyczne symetrycznej do funkcji rownanie matematyczne względem osi rownanie matematyczne 

rownanie matematyczne 

Funkcja jest malejąca i przechodzi przez punkt rownanie matematyczne zatem jest przedstawiona na wykresie rownanie matematyczne       

 

rownanie matematyczne Gdy funkcja rownanie matematyczne jest symetryczna względem osi rownanie matematyczne to zachodzi rownanie matematyczne 

Wyznaczamy wzór funkcji rownanie matematyczne symetrycznej do funkcji rownanie matematyczne względem osi rownanie matematyczne 

rownanie matematyczne 

Funkcja jest malejąca i przechodzi przez punkt rownanie matematyczne zatem jest przedstawiona na wykresie rownanie matematyczne   

 

rownanie matematyczne Gdy funkcja rownanie matematyczne jest symetryczna względem punktu rownanie matematyczne to zachodzi rownanie matematyczne 

Wyznaczamy wzór funkcji rownanie matematyczne symetrycznej do funkcji rownanie matematyczne względem punktu rownanie matematyczne  

rownanie matematyczne 

Funkcja jest rosnąca i przechodzi przez punkt rownanie matematyczne zatem jest przedstawiona na wykresie rownanie matematyczne    

 

DYSKUSJA
Informacje
Autorzy: Aleksandra Ciszkowska, Alina Przychoda, Zygmunt Łaszczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Układy równań
W gimnazjum były już wprowadzone układy równań liniowych, więc nie powinno być problemem rozwiązanie ich. Dla przypomnienia: metoda polegała na tym, aby z pierwszego równania wyliczyć jedną zmienną, podstawić ją w drugim równaniu i wyliczyć drugą, podstawić tę do trzeciego - i tak dalej.

W liceum, wraz z wprowadzeniem funkcji kwadratowej, pojawiają się układy równań kwadratowych. Sposób rozwiązywania pozostaje jednak taki sam: kolejno wyznaczamy zmienne i podstawiamy je do następnych równan.

Jedyna różnica między układami liniowymi i kwadratowymi wynika ze specyfiki funkcji kwadratowej - może wyjść więcej niż jedno rozwiązanie.

Przykład:
$$x = y + 1$$
$$y^2 = 2z + 3$$
$$z = 3x + y$$

Z pierwszego równania wyznaczamy $$y$$:
$$y = x - 1$$

Podstawiamy do drugiego:
$$(x-1)^2 = 2z + 3$$

Wyznaczamy $$z$$
$$z = {(x-1)^2 - 3}/{2}$$

I podstawiamy wszystko do trzeciego równania:
$${(x-1)^2 - 3}/{2} = 3x + (x-1)$$
$$(x-1)^2 - 3 = (4x - 1)×2$$
$$x^2 - 2x + 1 - 3 = 8x - 2$$
$$x^2 - 10x = 0$$

Pierwsze rozwiązanie: $$x_1 = 0$$, równanie jest prawdziwe.

Drugie rozwiązanie: dzieląc obie strony przez $$x$$ otrzymujemy $$x_2 = 10$$

Teraz wystarczy jedynie podstawić wyniki do pierwszego równania:
$$y_1 = 0 - 1 = -1$$
$$y_2 = 10 - 1 = 9$$

I ostatecznie wyliczyć z:
$$z_1 = 3x_1 + y_1$$
$$z_1 = 3×0 + (-1) = -1$$
$$z_2 = 3x_2 + y_2$$
$$z_2 = 3×10 + 9 = 39$$

Jak widać, rozwiązaniami układu równań są trójki liczb $$(0,-1,-1)$$ oraz $$(10, 9, 39)$$.

Uwaga: trzeba pamiętać o tym, aby nie mieszać ze sobą przypadków, tzn. na przykład w trakcie wyliczania $$z$$ nie podstawić do jednego równania $$x_1$$ i $$y_2$$ - to są dwa zupełnie różne przypadki.
 

Ćwieczenie 1. Rozwiązać układ równań:

$$y^2 = 5x + 2$$
$$3z = 2y - x$$
$$z = -2x + y$$

Zaczynamy od podstawienia do równania drugiego $$z$$ z równania trzeciego:

$$3(-2x + y) = 2y -x$$
$$6x - x = 3y - 2y$$
$$5x = y$$

Możemy teraz wstawić otrzymanego $$y$$-a do równania pierwszego obliczając $$x$$:
$$(5x)^2 = 5x + 2$$
$$25x^2 - 5x - 2= 0$$

Używając wzorów Viete'a możemy rozłożyć tę funkcję na iloczyn:
$$(5x - 2)(5x + 1) = 0$$

Rozpatujemy teraz dwa przypadki:
a) $$5x - 2 = 0$$
$$5x = 2$$
$$x = {2}/{5}$$

Wtedy $$y = 5x = 2$$ oraz $$z = -2x + y = -{4}/{5} + 2 = {6}/{5}$$

b) $$5x + 1 = 0$$
$$5x = -1$$
$$x = -{1}/{5}$$

Wtedy $$y = 5x = -1$$ oraz $$z = -2(-{1}/{5}) -1 = -{3}/{5}$$

Układy równań

Układ równań to układ dwóch (lub więcej) łączących się równań, w których występują dwie (lub więcej) niewiadome.

Przykład:

ukladrownan

Przy rozwiązywaniu układów równań posługujemy się dwoma metodami: metodą podstawiania i przeciwnych współczynników.

Metoda podstawiania polega na wyznaczeniu z jednego równania jednej niewiadomej w stosunku do drugiej. Następnie otrzymane równanie podstawić do drugiego.

 

Metoda przeciwnych współczynników polega na takim doprowadzeniu dwóch równań by po odjęciu jednego od drugiego zostało równanie z jedną niewiadomą. Jak to zrobić? Wystarczy znaleźć w jednym równaniu jednomian, który w drugim będzie jego odwrotnością.

 

Układy równań mogą mieć jedno rozwiązanie, żadnego lub nieskończenie wiele.

  • Układ oznaczony to taki, który ma jedno rozwiązanie.
  • Układ nieoznaczony to taki, który ma nieskończoną ilość rozwiązań.
  • Układ sprzeczny to taki, który nie ma żadnego rozwiązania.
 

Pamiętaj!

$$a/b=c/d$$ -> $$a×d=c×b$$

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom