Matematyka

Naszkicuj wykres funkcji f i podaj jej przedziały monotoniczności 4.59 gwiazdek na podstawie 17 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Naszkicuj wykres funkcji f i podaj jej przedziały monotoniczności

1
 Zadanie

2
 Zadanie

3
 Zadanie

Funkcja f powstaje przez przesunięcie wykresu funkcji y=2x² o 3 jednostki w lewo.

Rysujemy pomocniczy układ współrzędnych (przesuwamy układ współrzędnych o 3 jednostki w lewo - przerywana linia) i w nim rysujemy wykres funkcji y=2x².

 

 

 

Funkcja f powstaje przez przesunięcie wykresu funkcji y=2x² o 1 jednostkę w prawo.

 

 

Funkcja f powstaje przez przesunięcie wykresu funkcji y=-2x² o 3 jednostki w lewo.

 

 

Funkcja f powstaje przez przesunięcie wykresu funkcji y=-2x² o 1 jednostkę w prawo.

DYSKUSJA
user avatar
Igor

10 kwietnia 2018
dzieki :):)
user avatar
Tomek

12 grudnia 2017
dzieki :):)
user avatar
Doris

25 września 2017
dzieki
klasa:
Informacje
Autorzy: Wojciech Babiański, Lech Chańko, Dorota Ponczek
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326721540
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Największy wspólny dzielnik (NWD)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6.
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.

  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12.
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.


Największy wspólny dzielnik 
dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWD dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn wspólnych czynników (zaznaczonych czynników).  

Przykład:

Skala i plan

Przy wykonywaniu rysunków niektórych przedmiotów lub sporządzaniu map, planów musimy zmniejszyć rzeczywiste wymiary przedmiotów, aby rysunki zmieściły się na kartce. Są też rzeczy niewidoczne dla oka, które obserwujemy za pomocą mikroskopu, wówczas rysunki przedstawiamy w powiększeniu.
W tym celu stosujemy pewną skalę. Skala określa, ile razy dany obiekt został pomniejszony lub powiększony. Rozróżniamy zatem skale zmniejszające i zwiększające.

Skala 1:2 („jeden do dwóch”) oznacza, że przedstawiony obiekt jest dwa razy mniejszy od rzeczywistego, czyli jego wymiary są dwa razy mniejsze od rzeczywistych.

Skala 2:1 („dwa do jednego”) oznacza, że przedstawiony obiekt jest dwa razy większy od rzeczywistego, czyli jego wymiary są dwa razy większe od rzeczywistych.

Skala 1:1 oznacza, że przedstawiony obiekt jest taki sam jak rzeczywisty.

Przykład:

skala
 

Prostokąt środkowy jest wykonany w skali 1:1. Mówimy, że jest naturalnej wielkości. Prostokąt po lewej stronie został narysowany w skali 1:2, czyli jego wszystkie wymiary zostały zmniejszone dwa razy. Prostokąt po prawej stronie został narysowany w skali 2:1, czyli jego wszystkie wymiary zostały zwiększone dwa razy.

 

Przykłady na odczytywanie skali:

  • skala 1:50 oznacza zmniejszenie 50 razy
  • skala 20:1 oznacza zwiększenie 20 razy
  • skala 1:8 oznacza zmniejszenie 8 razy
  • skala 5:1 oznacza zwiększenie 5 razy
 

Plan to obraz niewielkiego obszaru, terenu, przedstawiony na płaszczyźnie w skali. Plany wykonuje się np. do przedstawienia pokoju, mieszkania, domu, rozkładu ulic w osiedlu lub mieście.

Mapa to podobnie jak plan obraz obszaru, tylko większego, przedstawiony na płaszczyźnie w skali (mapa musi uwzględniać deformację kuli ziemskiej). Mapy to rysunki terenu, kraju, kontynentu.

Skala mapy
Na mapach używa się skali pomniejszonej np. 1:1000000. Oznacza to, że 1 cm na mapie oznacza 1000000 cm w rzeczywistości (w terenie).

Przykłady na odczytywanie skali mapy
  • skala 1:500000 oznacza, że 1 cm na mapie to 500000 cm w rzeczywistości
  • skala 1:2000 oznacza, że 1 cm na mapie to 2000 cm w rzeczywistości
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom