Matematyka

Matematyka 2 Pazdro. Podręcznik do liceów i techników. Zakres podstawowy (Podręcznik, OE Pazdro)

Dopisz brakujące równanie układu tak 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Dopisz brakujące równanie układu tak

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

W przykładzie a wystarczy dopisać drugie równanie tak, że jego lewa strona jest taka sama, a prawa jest inna. 

W przykładzie b wystarczy dopisać drugie równanie tak, że jest ono wielokrotnością pierwszego równania. 

W przykładzie c wystarczy znaleźć parę liczb, która spełnia pierwsze równanie i dopisać drugie równanie tak, aby spełniaja je taka sama para liczb. 

 

`a)`

`{(2x+3y=1), (2x+3y=4):}`

 

`b)`

`{(x+5y=6), (2x+10y=12):}`

 

`c)`

 `x=1,\ \ \ y=7` 

`{(x+y=8), (2x+y=9):}`

 

DYSKUSJA
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab i Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wielokrotności

Wielokrotność liczby otrzymamy mnożąc tę liczbę przez kolejne liczby naturalne. 

Uwaga!!!

0 jest wielokrotnością każdej liczby naturalnej. 

Każda liczba naturalna jest wielokrotnością liczby 1. 


Przykłady
:

  • wielokrotności liczby 4 to: 
    • 0, bo  `0*4=0` 
    • 4, bo  `1*4=4`  
    • 8, bo  `2*4=8`  
    • 12, bo  `3*4=12`  
    • 16, bo  `4*4=16`  
    • 20, bo  `5*4=20` , itd.  
       
  • wielokrotności liczby 8 to:
    • 0, bo  `0*8=0`  
    • 8, bo  `1*8=8`  
    • 16, bo  `2*8=16`  
    • 24, bo  `3*8=24`  
    • 32, bo  `4*8=32`  
    • 40, bo  `5*8=40`, itd.  
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie