Matematyka

Miejscami zerowymi funkcji f są liczby -4, 0, 7. 4.5 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Miejscami zerowymi funkcji f są liczby -4, 0, 7.

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

5
 Zadanie

Miejsca zerowe są to takie argumenty funkcji, dla których przyjmuje ona wartość 0. Pierwsze współrzędne (iksowe) punktów należących do funkcji f(x) i f(-x) są liczbami przeciwnymi, a że miejsca zerowe opisuje się właśnie przez współrzędną iksową (bo ta druga dla miejsc zerowych zawsze wynosi 0), to miejscami zerowymi funkcji f(-x) będą liczby przeciwne do miejsc zerowych funkcji f(x).

`x_1=-(-4)=ul(4)`

`x_2=-0=ul(0)`

`x_3=ul(-7)`

DYSKUSJA
Informacje
Matematyka Pazdro. Podręcznik do liceum i technikum klasa 1. Zakres podstawowy
Autorzy: Marcin Kurczab, Elżbieta Kurczab i Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
Autor rozwiązania
user profile image

Monika

3643

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Największy wspólny dzielnik (nwd)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6;
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.
  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12;
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Zobacz także
Udostępnij zadanie