Wykonaj mnożenie i zredukuj wyrazy podobne - Zadanie 6: Policzmy to razem 2 - strona 188
Matematyka
Wybierz książkę
Wykonaj mnożenie i zredukuj wyrazy podobne 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Wykonaj mnożenie i zredukuj wyrazy podobne

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

  

 

 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Prostopadłościan i sześcian

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.

  • Każdy prostopadłościan ma 6 ścian, 8 wierzchołków i 12 krawędzi.

  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.

  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.

  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.


Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c.

Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.


Prostopadłościan, którego wszystkie ściany są jednakowymi kwadratami nazywamy sześcianem.

Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat

a - długość krawędzi sześcianu

Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $3/8$ < $5/8$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $4/5$ > $4/9$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2821ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6996WIADOMOŚCI
NAPISALIŚCIE721KOMENTARZY
komentarze
... i8518razy podziękowaliście
Autorom