W każdej parze zdań zaznacz - Zadanie 9: Język polski 7. Nauka o języku cz. 2 - strona 17
Język polski
Język polski 7. Nauka o języku cz. 2 (Zeszyt ćwiczeń, GWO)
W każdej parze zdań zaznacz 4.38 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Język polski

W każdej parze zdań zaznacz

7
 Zadanie
8
 Zadanie

9
 Zadanie

a)

Należy zaznaczyć następujące zdania:

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 7 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
7 szkoły podstawowej
Informacje
Autorzy: Piotr Borys, Danuta Chwastniewska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209519
Autor rozwiązania
user profile

Iwona

24950

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Ułamki zwykłe

O ułamkach uczyliśmy się już w szkole podstawowej.

Oznaczamy nimi w matematyce „część” czegoś. 

 

Ułamek składa się z licznika, mianownika oraz kreski ułamkowej.

ułamek

Wyrażenie postaci `a/b` , gdzie a i b to liczby naturalne oraz b jest różne od zera, nazywamy ułamkiem zwykłym.

Ciekawostka

Współczesny sposób zapisu ułamków pochodzi od matematyków hinduskich, którzy zapisywali licznik i mianownik nie używając kreski rozdzielającej. Dodanie kreski rozdzielającej zawdzięczamy Arabom tłumaczącym dzieła Hindusów. W Europie znane do dziś oznaczenie ułamków jako pierwszy w swoich pracach publikuje włoski matematyk Fibonacci.

Ułamki to inny zapis dzielenia liczb naturalnych.
Iloraz liczb naturalnych `a:b` możemy zapisać w postaci ułamka `a/b` . Dzielna `a`  jest licznikiem ułamka, dzielnik `b`  różny od zera jest mianownikiem, a kreska ułamkowa zastępuje znak dzielenia: `a:b=a/b` , gdzie b jest różne od zera ($b≠0$).

Przykłady:

  • `9/2=9:2`  

  • `2/3=2:3`  


Odwrotność ułamka

Jeżeli dany jest ułamek `a/b`, to ułamek `b/a` nazywamy odwrotnością ułamka `a/b` , gdzie `a!=0 \ "i" \ b!=0` .

Przykłady

  • odwrotnością liczby `3/4`  jest ułamek `4/3` ;  

  • odwrotnością liczby `4=4/1`  jest ułamek `1/4`,

  • odwrotnością ułamka  `1/9` jest liczba `9/1=9`


Ułamek w życiu codziennym

W życiu codziennym ułamek jest stosowany bardzo często, głównie oznacza część (kawałek) jakiejś całości.

Przykład:

  • Gdy podzielimy pizzę na 7 kawałków i zabierzemy 3 kawałki, to będziemy mieli `3/7`  („trzy siódme”) pizzy.

    Ogólnie:

    `a/b`   → jeśli mamy jakiś przedmiot (np. jabłko, tort, pizzę, czekoladę), to mianownik `b`  mówi na ile części go dzielimy, a licznik `a`  – ile takich części zabieramy.

Logarytm potęgi

Zdarza się również, że liczba logarytmowa jest potęgą, np.: $log_2 {4^3}$. Wtedy wykładnik potęgi (w tym przypadku jest to 2) wyciągamy przed logarytm.

Wzór na logarytm potęgi:

$log_a(b^n)=n×log_a b$
 

Przykład:

$log_2 5^4=$

Po prostu wyciągamy wykładnik potęgi przed logarytm:

$log_2 5^4= 4×log_2 5$
 

Uwaga!

Dziedzinę sprawdzamy tylko wtedy, kiedy mamy w logarytmach niewiadome, jednakże warto wiedzieć czy nie mamy sprzeczności.
Wszystkie wzory z tego tematu znajdują się w karcie wzorów maturalnych.
Jeśli logarytm nie ma podstawy to znaczy, że to logarytm dziesiętny, wtedy $a=10$.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom