Wymień postanowienia traktatu wersalskiego. - Zadanie 2: Po prostu historia. Podręcznik zakres podstawowy - strona 18
Historia
Po prostu historia. Podręcznik zakres podstawowy (Podręcznik, WSiP)
Wymień postanowienia traktatu wersalskiego. 4.34 gwiazdek na podstawie 6 opinii
  1. Technikum
  2. 1 Klasa
  3. Historia

Wymień postanowienia traktatu wersalskiego.

1
 Zadanie

2
 Zadanie

3
 Zadanie

Postanowienia traktatu wersalskiego w sprawie Niemiec:

  • Utrata Alzacji i Lotaryngii przez Niemcy na rzecz Francji;
  • Przeprowadzenie plebiscytu w Szlezwiku w 1920 r. i przyłączenie północnej części jego terytorium do Danii;
  • Ustalenie, że okręg Saary przez 15 lat ma znajdować się pod zarządem Ligii Narodów, a później

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do rozwiązania undefined
Aga

24 września 2018
dzieki!!!!
opinia do zadania undefined
Dominika

14 lipca 2018
dzięki :):)
klasa:
I liceum
Informacje
Autorzy: Rafał Dolecki, Krzysztof Gutowski, Jędrzej Smoleński
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302126680
Autor rozwiązania
user profile

Paulina

71654

Nauczyciel

Wiedza
Ciekawostka
Miara łukowa jest używana w fizyce i wielu zadaniach technicznych, ponieważ dla małych kątów kąt w radianach jest równy sinusowi tego kąta: można więc pozbyć się z równania kłopotliwych funkcji trygonometrycznych uzyskując całkiem dobre przybliżenie wyniku. Np. w równaniu $ sin α = 0,087156$ możemy spokojnie opuścić sinus i powiedzieć, żę kąt $α$ jest w przybliżeniu równy właśnie $0,087156$ radianów.
Wykresy nietypowych funkcji
Dość enigmatyczny tytuł miał sugerować, że w tym rozdziale nie będziemy zajmowali się dobrze poznanymi wcześniej, typowymi funkcjami. Zamiast tego skupimy się na funkcjach określonych na różnych przedziałach całkiem różnymi wzorami.

Funkcję określoną na różnych przedziałach różnymi wzorami zapisujemy na przykład tak:

1

Oznacza to, że dla $x$ z przedziału $(- ∞, 2)$ przybiera ona wartość $x^2 -3x + 2$, dla $x$ większych od dwóch i mniejszych od trzech staje się funkcją liniową, a dla $x$ większych od $4$ jest to ${1}/{x}$.
Jak widać jej dziedziną nie jest cały zbiór liczb rzeczwistych: dla $x$ z przedziału $< 3, 4 >$ funkcja nie przyjmuje żadnej wartości.

1W

Mając wykres możemy odczytać z niego wiele informacji: na przykład przedziały monotoniczności.

Aby to zrobić, musimy jednak rozwiązać równanie funkcji kwadratowej, aby dowiedzieć się, w którym miejscu ma ona wierzchołek (w wierzchołku funkcja kwadratowa przestaje maleć i zaczyna rosnąć):

$x^2 - 3x + 2 = 0$
$△ = 1$
$x_1 = -1$
$x_2 = 2$

Wierzchołek leży w połowie drogi między jej pierwiastkami:
$x_{wierz} = {-1+2}/{2} = {1}/{2}$


Możemy teraz powiedzieć, że:
1) Funkcja maleje na przedziale $(-∞, 2)$
2) Jest stała na przedziale $(2, 3)$
3) Maleje na przedziale $(4, ∞)$.

Jesteśmy także w stanie stwierdzić, gdzie przecina ona oś $x$ - jedyne miejsca to własnie pierwiastki funkcji kwadratowej, ponieważ wyrażenie ${1}/{x}$ dla dodatnich $x$ jest zawsze większe od $0$.


Ćwiczenie 1:
Narysuj wykres funkcji
2
I określ jej pierwiastki.
 

Zadanie rozwiązujemy obliczając pierwiastki wszystkich funkcji składających się na naszą funckcję $f(x)$, a później sprawdzając, czy mieszczą się one w odpowiednim przedziale.

Pierwiastkiem pierwszej funkcji (kwadratowej) jest liczba ${1}/{3}$ - to pierwiastek podwójny (ponieważ $x^2 - x + {1}/{4} = (x - {1}/{2})^2$). Nie mieści się ona jednak w przedziale, na którym funkcja $f(x)$ jest określona tym wzorem.

Pierwiastek drugiej funkcji to oczywiście $x = 3$ - w tym przypadku należy on do przedziału, gdzie określamy tak naszą funkcję.

Pierwiastek trzeciego wzoru to $x = 10$ - on także należy do przedziału, na jakim określamy naszą funkcję w ten sposób.

Pierwiastki znajdują się zatem w punktach $3, 10$..



Ćwiczenie 2:
Mając funkcję
3
Podaj przedziały monotoniczności (gdzie rośnie, gdzie maleje, a gdzie jest stała).
 

funkcja maleje we wszystkich przedziałach, w których jest określona, tzn. na przedziale $(0, 1);(1,2) ;(2, 3)$, ale nie w całej dziedzinie, ponieważ:

1) każda z jej funkcji składowych jest malejąca, więc na tych przedziałach $f(x)$ rzeczywiście maleje

2) Przy przechodzeniu przez granicę przedziału zwiększamy wartość - każdy ze składników zwiększa się (stała, licznik ułamka zwiększa się, mianownik maleje, więc cały ułamek rośnie).

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom