Historia

Bliżej historii 2 (Podręcznik, WSiP)

Jakie działania króla i tzw. Familii 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Jakie działania króla i tzw. Familii

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

Jakie działania króla i tzw. Familii miały na celu poprawę sytuacji w Polsce?

  • Przedstawiciele Familii już u schyłku panowania ostatniego z Sasów zaczęli zabiegać o przyzwolenie Rosji na przeprowadzenie umiarkowanych reform.
  • Czartoryscy i Potoccy postulowali zniesienie "liberum veto"oraz pozbawienia przedstawicieli szlachty - gołoty prawa głosu; 
  • Działania prowadzone przez Familię zaczęły jednak szybko wzbudzać niepokój Petersburga. W 1764 roku, podczas bezkrólewia doprowadzili do zwołania tzw. "sejmu skonfederowanego", co oznaczało, że nie można go było zerwać przez "liberum veto", a uchwały były podejmowane większością głosów;
  • Dzięki zabiegom rodzin Czartoryskich i Potockich udało się przeforsować pierwsze reformy - wprowadzono zasadę głosowania większością głosów nad ustawami dotyczącymi skarbu państwa;
  • Uchwalono cło generalne (opłacane przez szlachtę i duchowieństwo), aby podnieść dochody kraju;
  • W Warszawie założono Szkołę Rycerską;
DYSKUSJA
Informacje
Autorzy: Igor Kąkolewski, Anita Plumińska-Mieloch
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Paulina

50647

Nauczyciel

Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom