Omów uwarunkowania występowania... - Zadanie 1: Oblicza geografii 3. Zakres rozszerzony - strona 58
Geografia
Oblicza geografii 3. Zakres rozszerzony (Podręcznik, Nowa Era)
Omów uwarunkowania występowania... 4.38 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 3 Klasa
  3. Geografia

Omów uwarunkowania występowania...

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

Gleby śródstrefowe to rodzaj gleb, które tworzą się w określonych warunkach geologicznych i wodnych. Przykładowo rędziny są glebami ściśle związanymi ze skałami zawierającymi węglan wapnia (CaCO3). Najczęściej więc ten typ gleby można spotkać na skałach wapiennych, 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy III liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
III liceum
Informacje
Autorzy: Marek Więckowski, Roman Malarz
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326729409
Autor rozwiązania
user profile

Damian

33858

Nauczyciel

Wiedza
Kąty

Dwie półproste, które mają wspólny początek dzielą płaszczyznę na dwie części. Półproste te z każdą z tych części tworzą kąt.

Półproste nazywamy ramionami kąta. Miary kątów podajemy w stopniach (°).


Wyróżniamy kilka rodzajów kątów:

  1. Kąt prosty - ma miarę 90°

    prosty
  2. Kąt półpełny - ma miarę 180°

  3. Kąt pełny - ma miarę 360°

  4. Kąt ostry - ma miarę mniejszą niż 90°

    ostry
  5. Kąt rozwarty - ma miarę większą niż 90° i mniejszą niż 180°

    rozwarty
  6. Kąt wklęsły - ma miarę większą niż 180° i mniejszą niż 360°

    wklesly



Istnieje również kilka zależności między dwoma kątami:

  1. Kąty przyległe - suma ich miar wynosi 180°

    przylegle
  2. Kąty wierzchołkowe - mają takie same miary

    wierzcholkowe
  3. Kąty odpowiadające - mają takie same miary

    odpowiadajace
  4. Kąty naprzemianległe - mają takie same miary

    naprzemianlegle
Średnia i mediana

Średnia arytmetyczna to średni wynik spośród wielu innych wyników.


Sposób obliczania średniej: 

`"średnia"=("suma wyników")/("liczba wyników")` 

Średnia arytmetyczna danego zestawu liczb to iloraz sumy tych liczb przez ich ilość. 

Przykład:

W klasie 7a jest 10 osób. Na koniec roku szkolnego uczniowie tej klasy uzyskali z matematyki następujące oceny: 6, 6, 5, 5, 5, 4, 3, 3, 3, 2. 

Ile wynosiła średnia ocen z matematyki na koniec roku w tej klasie?  

`"średnia"=(6+6+5+5+5+4+3+3+3+2)/10=42/10=4,2` 

Odpowiedź: Średnia ocen z matematyki na koniec roku w tej klasie wynosiła 4,2.


 

Mediana to wynik środkowy uporządkowanego malejąco lub rosnąco zbioru wyników.

  • Jeśli mamy nieparzystą liczbę wyników, to mediana jest wyrazem środkowym. 

  • Jeśli mamy parzystą liczbę wyników, to mediana jest średnią arytmetyczną dwóch środkowych wyrazów. 

 
Przykład:

W klasie 7a jest 10 osób. Na koniec roku szkolnego uczniowie tej klasy uzyskali z matematyki następujące oceny: 6, 6, 5, 5, 5, 4, 3, 3, 3, 2. 

Jaka jest mediana ocen na koniec roku z matematyki w tej klasie?

Oceny ustawiamy w kolejności malejącej: 6, 6, 5, 5, 5, 4, 3, 3, 2. Jest ich 10, czyli parzysta ilość. 

Mediana będzie więc średnią arytmetyczną dwóch środkowych wyników. 

`"mediana"=(5+4)/2=9/2=4,5`  

Odpowiedź: Mediana ocen na koniec roku w tej klasie wynosi 4,5.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom