Zbiór zadań wielopoziomowych z fizyki dla gimnazjum (Zbiór zadań, WSiP)

Wózek zaczyna poruszać się pod wpływem... 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

`"Dane:"` 

`"s"=1\ "m"` 

`"a"=0,5\ "m"/"s"^2` 

`"Szukane:"` 

`"t"="?"` 

Wózek porusza się ruchem jednostajnie przyspieszonym. Możemy zatem przekształcić wzór na drogę w tym ruchu:

`"s"=("a"*"t"^2)/2\ "/"*2` 

`2*"s"=(strike2*"a"*"t"^2)/strike2` 

`2*"s"="a"*"t"^2\ \ "/: a"` 

`(2*"s")/"a"=(strike"a"*"t"^2)/strike"a"` 

`"t"^2=(2*"s")/"a"` 

`"t"=sqrt((2*"s")/"a")` 

Podstawiamy dane liczbowe:

`"t"=sqrt((2*1\ "m")/(0,5\ "m"/"s"^2))` 

`"t"=2\ "s"` 

Odpowiedź: Wózek dojedzie do krawędzi stołu po 2 sekundach.   

 

DYSKUSJA
Informacje
Zbiór zadań wielopoziomowych z fizyki dla gimnazjum
Autorzy: Wojciech M. Kwiatek, Iwo Wroński
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Ola

5916

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Zobacz także
Udostępnij zadanie