Zbiór zadań z fizyki dla gimnazjum (Zbiór zadań, Nowa Era)

Przeczytaj opis wycieczki... 4.8 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

Najpierw musimy obliczyć dane do wykresów: 

Po zdaniu "Po półtorej godziny, mając za sobą 8 km" mamy dane:

`"t"_1=1,5\ "h"`

`"s"_1=8\ "km"`

Obliczamy więc prędkość na tym etapie trasy:

`"v"_1="s"_1/"s"_1=(8\ "km")/(1,5\ "h")`

`"v"_1=5,33\ "km"/"h"`

Po zdaniu "Potem szliśmy z prędkością 5 km/h aż do godziny 13.00" mamy dane:

`"t"_2=13:00-11:00=2 "h"`

`"v"_2=5\ "km"/"h"`

Obliczamy zatem drogę:

`"s"_2="v"_2*"t"_2=5\ "km"/strike"h"*2\ strike"h"`

`"s"_2=10\ "km"`

Dodajemy więc poprzednią drogę i otrzymujemy punkt na wykresie:

`(13:00,18\ "km")`

Na koniec obliczamy prędkość na ostatnim etapie: 

`"s"_3=21\ "km"-18\ "km"=3\ "km"`

`"t"_3=15:30-14:15=1\ "h"\ 15\ "min"=1,25\ "h"`

`"v"_3="s"_3/"t"_3=(3\ "km")/(1,25\ "h")=2,4\ "km"/"h"`

Teraz możemy narysować wykresy:

  • Prędkości od czasu: 

  • drogi od czasu:

DYSKUSJA
Informacje
Zbiór zadań z fizyki dla gimnazjum
Autorzy: Marcin Braun, Grażyna Francuz-Ornat, Jan Kulawik
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Ola

3545

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie