Jak wiesz, wartość przyspieszenia... 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Fizyka

Jak wiesz, wartość przyspieszenia...

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

Z wykresu odczytujemy dane:

`"F"_1=11\ "N"`

`"F"_2=7\ "N"`

Szukamy natomiast:

`"m"_1="?"\ \ \ \ \ \ \ \ \ "m"_2="?"`

Przekształcamy wzór na przyspieszenie zgodnie z II zasadą dynamiki na wzór na masę:

`"a"="F"/"m"\ "/"*"m"`

`"a"*"m"="F"\ "/:a"`

`"m"="F"/"a"`

Podstawiamy dane liczbowe i obliczamy:

`"m"_1="F"_1/"a"_1=(11\ "N")/(0,22\ "m"/"s"^2)=50\ "kg"`

`"m"_2="F"_2/"a"_2=(7\ "N")/(0,35\ "m"/"s"^2)=20\ "kg"`

Wyrażamy stosunek mas:

`"m"_1/"m"_2=(50\ strike"kg")/(20\ strike"kg")=2,5`

Odpowiedż: Masa pierwszego z ciał jest 2,5 razy większa od drugiej.

DYSKUSJA
user profile image
Gość

0

2017-10-14
dzieki
Informacje
Świat fizyki 2
Autorzy: Barbara Sagnowska, Maria Rozenbajgier, Ryszard Rozenbajger
Wydawnictwo: ZamKor / WSiP
Rok wydania:
Autor rozwiązania
user profile image

Ola

1866

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Udostępnij zadanie