Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Elementarz XXI wieku. Ćwiczenia edukacja matematyczna cz. 1 (Zeszyt ćwiczeń, Nowa Era)

Wpisz odpowiednie liczby... 4.2 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 3 Klasa
  3. Edukacja wczesnoszkolna

Najpierw obliczamy wynik działania po lewej stronie:

`35+61=96`

Wynik działania po prawej stronie ma być większy. Jednym ze składników działania jest liczba 35, więc drugi składnik musi być większy niż 61. Zapisujemy jakąkolwiek liczbę większą niż 61:

`35+61\ < \ 35+62`

 

Najpierw obliczamy wynik działania po lewej stronie:

`47+32=79`

Wynik działania po prawej stronie ma być mniejszy. Jednym ze składników działania jest liczba 48, czyli o 1 większa niż 47. To znaczy, że brakująca liczba musi być mniejsza niż 31. Zapisujemy jakąkolwiek liczbę mniejszą niż 31:

`47+32\ >\ 48+29`

 

Najpierw obliczamy wynik działania po lewej stronie:

`69-33=36`

Wynik po prawej stronie ma być mniejszy. Odjemna wynosi 69. To znaczy, że odjemnik musi być większy niż 33, żeby różnica była mniejsza niż po lewej stronie:

`69-33\ >\ 69-34`

 

Najpierw obliczamy wynik działania po prawej stronie:

`86-42=44`

Wynik po lewej stronie ma być mniejszy. Odjemna wynosi 86. To znaczy, że odjemnik musi być większy niż 42, żeby różnica była mniejsza niż po prawej stronie:

`86-45\ < \ 86-42` 

DYSKUSJA
Informacje
Autorzy: Krysytna Bielenicka, Maria Bura
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Ola

12903

Nauczyciel

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom