Stała równowagi reakcji kwasu octowego... 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 2 Klasa
  3. Chemia

Stała równowagi reakcji kwasu octowego...

20
 Zadanie

21
 Zadanie

W układzie, w stanie równowagi, znajdowały się reagenty, których ilości wynosiły odpowiednio:

`n_"alkohol"=0,5mol `

`n_"kwas"=3mol `

`n_"woda"=3mol `

`n_"ester"=2mol `

Wiemy, że w reakcji powstały 2 mole estru, więc z każdej z substancji początkowych ubyło po 2 mole. Zapiszmy te dane w tabeli i ustalmy początkowe liczby moli substancji znajdujących się w układzie:

 

 

n0 [mol]

Δn [mol]

nk [mol]

CH3COOH

5

-2

3

C2H5OH

2,5

-2

0,5

CH3COOC2H5

0

+2

2

H2O

1

+2

3

Z wyznaczonych danych wynika, że w układzie na początku znajdowało się:

`n_"kwas"=5mol `

`n_"alkohol"=2,5mol `

`n_"woda"=1mol `

Z treści zadania wiemy, że w każdym z roztworów (kwasu i alkoholu) znajdowało się tyle samo wody. Wiemy, że w układzie znajdował się 1 mol wody, czyli na kwas przypadało 0,5 mola wody i na alkohol tak samo. Roztowry te skłądały się więc z:

5 moli kwasu i 0,5 mola wody

2,5 mola alkoholu i 0,5 mola wody

Wyznaczmy masę składników roztwory kwasu oraz masę całego roztworu:

`M_(CH_3COOH)=60g/(mol) `

`M_(H_2O)=18g/(mol) `

`m_(CH_3COOH)=5mol*60g/(mol)=300g `

`m_(H_2O)=0,5mol*18g/(mol)=9g `

`m_"roztworu"=300g+9g=309g `

Wyznaczmy stężenie procentowe kwasu:

`Cp=m_s/m_"roztworu"*100% `

`Cp=(300g)/(309g)*100% `

`Cp=97% `

 

Odpowiedź: Stężenie procentowe kwasu octowego użytego do doświadczenia wynosiło 97%

DYSKUSJA
Informacje
Arkusze egzaminacyjne CHEMIA
Autorzy: Barbara Pac
Wydawnictwo: Wydawnictwo Szkolne OMEGA
Rok wydania:
Autor rozwiązania
user profile image

Ania

4752

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Odejmowanie pisemne
  1. Zapisujemy odjemną, a pod nią odjemnik, wyrównując ich cyfry do prawej strony.

    odejmowanie1
     
  2. Odejmowanie prowadzimy od strony prawej do lewej. Najpierw odejmujemy jedności, w naszym przykładzie mamy 3 - 9. Jeśli jedności odjemnej są mniejsze od jedności odjemnika (a tak jest w naszym przykładzie), wtedy z dziesiątek przenosimy jedną (lub więcej) „dziesiątkę” do jedności i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie wygląda to następująco: od 3 nie możemy odjąć 9, więc przenosimy (pożyczamy) jedną dziesiątkę z siedmiu dziesiątek i otrzymujemy 13 – 9 = 4, czyli pod cyframi jedności zapisujemy 4, a nad cyframi dziesiątek zapisujemy ilość dziesiątek które nam zostały czyli 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostało nam sześć dziesiątek).

    odejmowanie2
     
  3. Odejmujemy dziesiątki, a następnie zapisujemy wynik pod cyframi dziesiątek. Gdy dziesiątki odjemnej są mniejsze od dziesiątek odjemnika, z setek przenosimy jedną (lub więcej) „setkę” do dziesiątek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 6 – 6 = 0, czyli pod cyframi dziesiątek zapisujemy 0.

    odejmowanie2
     
  4. Odejmujemy setki, a następnie wynik zapisujemy pod cyframi setek. Gdy setki odjemnej są mniejsze od setek odjemnika, z tysięcy przenosimy jeden (lub więcej) „tysiąc” do setek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 2 – 1 = 1, czyli pod cyframi setek zapisujemy 1.

    odejmowanie3
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik odejmowania pisemnego. W naszym przykładzie różnicą liczb 273 i 169 jest liczba 104.


Dla utrwalenia przeanalizujmy jeszcze jeden przykład odejmowania pisemnego.

Wykonamy pisemnie odejmowanie: 4071 - 956.

  1. Zapisujemy odjemną, a pod nią odjemnik.

    odejmowanie11
     
  2. Odejmujemy jedności: od 1 nie możemy odjąć 6, więc pożyczamy jedną dziesiątkę z siedmiu i otrzymujemy 11 – 6 = 5, czyli pod cyframi jedności zapisujemy 5, natomiast nad cyframi dziesiątek wpisujemy 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostaje sześć dziesiątek).

    odejmowanie12
     
  3. Odejmujemy dziesiątki: 6 – 5 = 1, czyli pod cyframi dziesiątek wpisujemy 1.

    odejmowanie13
     
  4. Odejmujemy setki: od 0 nie możemy odjąć 9, więc pożyczamy jeden tysiąc i rozmieniamy go na 10 setek (bo jeden tysiąc to dziesięć setek) i otrzymujemy 10 – 9 = 1, czyli pod cyframi setek wpisujemy 1, a nad cyframi tysięcy wpisujemy 3, bo tyle tysięcy zostało.

    odejmowanie14
     
  5. Odejmujemy tysiące: w naszym przykładzie mamy 3 – 0 = 3 i wynik zapisujemy pod cyframi tysięcy.

    odejmowanie15
     
  6. Wynik naszego odejmowania: 4071 – 956 = 3115.

Zobacz także
Udostępnij zadanie