Arkusze egzaminacyjne CHEMIA (Zbiór zadań, Wydawnictwo Szkolne OMEGA)

W celu przeprowadzenia reakcji opisanej... 4.34 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 2 Klasa
  3. Chemia

W celu przeprowadzenia reakcji opisanej...

3
 Zadanie

4
 Zadanie
5
 Zadanie

Amoniak i tlen zmieszano w stosunku molowym 2:5, przy czym początkowa ilość tlenu wynosiła 2,5 mola. Obliczmy jaka była początkowa ilość amoniaku:

`5\ -\ 2,5 mol `

`2\ -\ x `

`x=(2*2,5mol)/(5)=1mol `

Początkowa ilość amoniaku wynosiła więc 1 mol, a początkowa ilość tlenu - 2,5 mol. Reakcja zachodzi według równania:

`4NH_3+5O_2\ ->\ 4NO+6H_2O `

Z równania tego widzimy, że z 4 molami NH3 reaguje 5 moli O2 i powstają 4 mole NO oraz 6 moli H2O. Obliczmy ile tlenu przereaguje z 1 molem NH3:

`4mol\ NH_3\ -\ 5mol\ O_2 `

`1mol\ NH_3\ -\ x `

`x=(1mol*5mol)/(4mol)=1,25mol `

W reakcji weźmie więc udział 1,25 mol O2. Obliczmy ile moli tlenku azotu(II) powstanie:

`4mol\ NH_3\ -\ 4mol\ NO `

`1mol\ NH_3\ -\ 1mol\ NO `

Powstanie więc 1 mol NO. Obliczmy ile moli wody powstanie:

`4mol\ NH_3\ -\ 6mol\ H_2O `

`1mol\ NH_3\ -\ x `

`x=(1mol*6mol)/(4mol)=1,5mol\ H_2O `

Powstanie więc 1,5 mol H2O. 

W mieszaninie poreakcyjnej nie będzie więc amoniaku, pozostanie jednak 1,25 mol tlenu (ponieważ z 2,5 mol początkowej ilości tlenu przereagowało tylko 1,25 mola) i będą tam też powstałe NO oraz H2O.

 

NH3

O2

NO

H2O

liczba moli, mol

0

1,25

1

1,5

DYSKUSJA
Informacje
Arkusze egzaminacyjne CHEMIA
Autorzy: Barbara Pac
Wydawnictwo: Wydawnictwo Szkolne OMEGA
Rok wydania:
Autor rozwiązania
user profile image

Ania

10217

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Dzielenie pisemne
  1. Zapisujemy dzielną, nad nią kreskę, a obok, po znaku dzielenia, dzielnik. W naszym przykładzie podzielimy liczbę 1834 przez 14, inaczej mówiąc zbadamy ile razy liczba 14 „mieści się” w liczbie 1834.

    dzielenie1
     
  2. Dzielimy pierwszą cyfrę dzielnej przez dzielnik. Jeśli liczba ta jest mniejsza od dzielnika, to bierzemy pierwsze dwie lub więcej cyfr dzielnej i dzielimy przez dzielnik. Inaczej mówiąc, w dzielnej wyznaczamy taką liczbę, którą można podzielić przez dzielnik. Wynik dzielenia zapisujemy nad kreską, a resztę z dzielenia zapisujemy pod spodem (pod dzielną).

    W naszym przykładzie w dzielnej bierzemy liczbę 18 i dzielimy ją przez 14, czyli sprawdzamy ile razy 14 zmieści się w 18. Liczba 14 zmieści się w 18 jeden raz, jedynkę piszemy nad kreską (nad ostatnią cyfrą liczby 18, czyli nad 8). Następnie wykonujemy mnożenie 1•14=14 i wynik 14 wpisujemy pod liczbą 18, oddzielamy kreską i wykonujemy odejmowanie 18-14=4 i wynik 4 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać następująco: 18÷14=1 reszty 4.

    dzielenie2
     
  3. Do wyniku odejmowania opisanego w punkcie 2, czyli do otrzymanej reszty z dzielenia dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik. Tak jak poprzednio wynik zapisujemy nad kreską, a pod spodem resztę z tego dzielenia.
    W naszym przykładzie wygląda to następująco: do 4 dopisujemy cyfrę 3 (czyli kolejną cyfrę, która znajduje się za liczbą 18) i otrzymujemy liczbę 43, którą dzielimy przez dzielnik 14. Inaczej mówiąc sprawdzamy ile razy 14 zmieści się w 43. Liczba 14 zmieści się w 43 trzy razy, czyli 3 piszemy nad kreską (za 1), a następnie wykonujemy mnożenie 3•14=42i wynik 42 zapisujemy pod liczbą 43, oddzielamy kreską i wykonujemy odejmowanie 43-42=1 i wynik 1 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać: 43÷14=3 reszty 1.

    dzielenie2
     
  4. Analogicznie jak poprzednio do otrzymanej reszty dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik.
    W naszym przykładzie:
    do 1 dopisujemy ostatnią cyfrę dzielnej, czyli 4. Otrzymujemy liczbę 14, którą dzielimy przez dzielnik 14, w wyniku otrzymujemy 1 i wpisujemy ją nad kreską (po3). Następnie wykonujemy mnożenie 1•14=14 w wynik 14 zapisujemy pod 14, oddzielamy kreską i wykonujemy odejmowanie 14-14=0.
    Opisane postępowanie możemy zapisać 14÷14=1, czyli otrzymaliśmy dzielenie bez reszty, co kończy nasze dzielenie.

    dzielenie3
     
  5. Wynik dzielenia liczby 1834 przez 14 znajduje się nad kreską, czyli otrzymujemy ostatecznie iloraz 1834÷14=131.

Zobacz także
Udostępnij zadanie