Jakie stężenie procentowe ma roztwór otrzymany - Zadanie 13: Świat chemii 2a - strona 171
Chemia
Wybierz książkę
Jakie stężenie procentowe ma roztwór otrzymany 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Chemia

Jakie stężenie procentowe ma roztwór otrzymany

13
 Zadanie

14
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Dane:

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: Dorota Lewandowska, Anna Warchoł
Wydawnictwo: Zamkor
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Punkt przecięcia dwóch prostych
Jeśli proste przetną się w jednym miejscu mają tzw. jeden punkt wspólny, czyli punkt, który spełnia równanie zarówno pierwszej jak i drugiej prostej.

W celu obliczenia takowego punktu potrzebujemy rozwiązać zwyczajny układ równań, gdzie wynik będzie punktem przecięcia.

Przykład:
Znajdź punkt przecięcia prostych $y=3x-2$ oraz $y=-x+4$.
Mamy podane dwie proste, stwórzmy układ równań:

uklad1

Jedyne co potrzebujemy to rozwiązać ten układ, przypomnijmy sobie dwie popularne metody algebraiczne rozwiązywania układu równań (jeśli ktoś woli metodę graficzną również jest dozwolona i opisana w odpowiednim dziale). Te popularne metody to:

Podstawiania – doprowadzamy do wyznaczenia jednej ze zmiennych, czyli w tym wypadku x lub y musi być samotnie po lewej stronie

Przeciwnych współczynników - doprowadzamy do liczb przeciwnych w obu równaniach przy jednej ze zmiennych, np. $-2x$ i $2x$.

Pokażę jak szybko sobie poradzić tymi metodami z układem:

Metoda podstawiania:

Tutaj już mamy wyznaczony y, zatem łatwo działać dalej. Skoro $y=3x-2$ a zarazem $y=-x+4$ to jest to samo: $3x-2=-x+4$, czyli za y podstawiamy to, czemu jest równe y w drugim równaniu.

uklad1

$3x-2=-x+4$
$4x=6$ $|:4$
$x=1 1/2$

Teraz wystarczy tylko zamienić x w jednym z równań na nasz wynik i wyznaczyć $y$.

$y=-x+4$
$y=-1 1/2+4$
$y=2 1/2$

Zatem szukany punkt to A(1 $1/2$; 2 $1/2$).


Metoda przeciwnych współczynników:
uklad1
Doprowadzamy do liczb przeciwnych przy x za pomocą pomnożenia całego dolnego równania:

uklad3

A następnie robimy dodawanie „pod kreską” obu równań:

uklad4

$(y+3y)=(3x-3x)+(-2+12)$
$4y=10$
$y=2 1/2$

Wykonujemy ponownie podstawienie $y$ jako $2 1/2$ w jednym z równań.
$y=-x+4$
$2 1/2 =-x+4$
$x =4-2 1/2$
$x=1 1/2$
Jak widać osiągnęliśmy ten sam wynik.

Możliwe wyjątki:
W układach równań mogą się zdarzyć równania tożsamościowe i sprzeczne tak samo tutaj może wystąpić fakt, że:
- proste są równoległe i różne od siebie (układ sprzeczny, nigdy się nie przetną, więc nie ma punktu)
- proste są równoległe i nakładają się na siebie (układ toższamościowy, proste mają nieskończenie wiele punktów wspólnych)

Przykład układu sprzecznego:

uklad5
Zauważmy, że współczynnik przy obu x to 3. Pamiętamy, że jeśli $a_1=a_2$ to proste są równoległe i nigdy się nie przetną. Rozwiążmy szybko układ, aby wykazać jego sprzeczność:

uklad5

Podstawmy za y to co jest po prawej:
$3x-1=3x+3$
$-1=3$
Uzyskaliśmy bzdurę, zatem układ sprzeczny.


Przykład układu tożsamościowego:
uklad6

Zauważmy, że jeżeli wyznaczymy sobie właściwy y:

uklad7

To dostaliśmy dokładnie to samo, czyli proste nakładają się na siebie, układ jest tożsamościowy. Jak to wygląda w wyniku? Znów podstawianie:
$3+3x=3x+3$
$-3+3x-3x=0$
$0=0$
 
Obliczanie obniżki/podwyżki ceny

Zacznijmy od obniżek:

Przykład:

Komputer kosztował 1000zł po obniżce jego cena wynosi 750zł. O ile procent została obniżona cena?

Na początek obliczamy obniżkę:

$1000-750=250$

Tym razem nasze równanie wygląda tak:

$x%*1000=250$

Skróćmy przez 1000

$x%×1=x%=0,25$

Pamiętajmy, że % to ułamek o mianowniku 100

$x=25%$

Odp.: Obniżka wyniosła 25%.
 

Teraz podwyżka. Wzór na obliczanie podwyżki wygląda następująco:

$ ext"podwyżka" = { ext"cena po podwyżce" - ext"cena przed podwyżką"}/{ ext" cena przed podwyżką"} × 100% $

Przykład:

Benzyna kosztowała 5zł za litr. Niestety nadeszła fala podwyżek i cena wzrosła do 5zł 40gr. Oblicz o ile procent wzrosła cena.

Na początku zamiana:

5zł 40gr=5,4zł

Wystarczy, że podstawimy nasze liczby pod wzór:

$ ext"podwyżka" = { ext"cena po podwyżce" - ext"cena przed podwyżką"}/{ ext" cena przed podwyżką"} × 100% = { 5,4 - 5}/{5} × 100%=$
$={ 0,4}/{5}× 100%=8/{100}× 100%=8%$

Odp.: Podwyżka wyniosła 8%.
 

UWAGA! Obniżka i następnie podwyżka o tą samą kwotę nie dają takiej samej liczby!

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom