W jaki sposób człowiek wpływa na zmniejszanie - Zadanie 7: Świat chemii 2 - strona 103
Chemia
Wybierz książkę
W jaki sposób człowiek wpływa na zmniejszanie 4.17 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Chemia
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Działalność człowieka ma znaczny wpływ na środowisko w tym na ilość zasobów wodnych oraz na ilość zanieczyszczeń. Woda jest wykorzystywana nie tylko w życiu codziennm w gospodarstwach domowych, ale również w zakałach przemysłowych. Do zmniejszenia zasobów wodnych przyczynia się duży pobór wody do zakładów przemysłowych, rosnące zużycie wody w gospodarstwach domowych a także zwiększenie zużycia wody przez rolnictwo. Zanieczyszczenia wody spowodowane są między innymi przez odprowadzanie ścieków do rzek.

DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: Anna Warchoł, Dorota Lewandowska, Andrzej Danel, Marcin Karelus
Wydawnictwo: Zamkor
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Minimum i maksimum funkcji kwadratowej w danym przedziale
W celu znalezienia wartości minimalnej i maksymalnej w funkcji kwadratowej musimy wykorzystać to czego się nauczyliśmy w poprzednich .

Naszym celem jest znalezienie wartości najmniejszej lub największej, do tego zależnie od zadania będziemy potrzebować:

- Obliczenia równania
- Wykresu
- Wierzchołka paraboli
- Granic przedziału
- Wartości osiąganych na krańcach

Wszystko już potrafimy, kluczem jest narysowanie wykresu i granic oraz wskazanie punktu.

No to pokażmy na przykładzie:

Przykład:

Znajdź maksymalną wartość funkcji $f(x)=-x^2-2x+3$ na przedziale (-2;0).
Najlepiej najpierw ją sobie narysować, w tym celu znajdźmy miejsca zerowe:

$a=-1$

$b=-2$

$c=3$

Obliczmy deltę:

$∆=b^2-4ac$

$∆=(-2)^2-4×(-1)×3$

$∆=4+12$

$∆=16$

Obliczmy od razu pierwiastek z delty

$√{∆}=√{16}=4$


No i teraz nasze rozwiązania:

$x_1={-b+√{∆} }/{2a}$

$x_1={2+4}/{-2}=6/{-2}=-3$

$x_2={-b-√{∆} }/2a$

$x_2={2-4}/{-2}=-{-2}/2=1$

Narysujmy prowizoryczną parabolę (jest smutna, bo $a<0$:

par1

Zaznaczmy granice przedziału. Z racji, że nawiasy są (), linia jest przerywana

par2

Jak widzimy wierzchołek paraboli jest pomiędzy nimi, więc to on będzie naszym maksimum

par3

No to liczymy wierzchołek, zaczynając od P, które jest średnią $x_1$ i $x_2$.

$P={-3+1}/2=-1$

Faktycznie P mieści się w naszym przedziale.

Teraz liczymy drugi współczynnik, czyli Q:

$Q={-∆}/{4a}$

$Q={-16}/{-8}$

$Q=2$

Piszemy odpowiedź:

$F_{max}=2$ lub słownie: wartość maksymalna to 2

Jeśli proszą nas o argument, dla jakiego funkcja przyjmuje maksymalną wartość, piszemy:

$F(1)=2=F_{max}$

Argument to oczywiście nasze P.
 
Wykres funkcji wykładniczej
W tym temacie poznamy kolejny typ wykresu. Czym jest funkcja wykładnicza? Jest to funkcja, w której nasz x robi za potęgę np.

$y=2^x$

Opowiedzmy sobie trochę o samej funkcji.

Przede wszystkim ograniczenia:

Funkcja wykładnicza nie przyjmuje wartości ujemnych, tak samo podstawa potęgi nie może być ani zerem ani liczbą ujemną.

W tym dziale nauczymy się tylko rysowania takiej funkcji i kilku własności z tego wynikających.

Funkcję tę rysujemy trochę inaczej niż liniową, potrzebujemy więcej punktów.

Weźmy naszą przykładową:

$y=2^x$

Zróbmy tabelkę jak dla funkcji liniowej:

tab1

Zaznaczmy te punkty na układzie współrzędnych:

wyk1

I narysujmy gotowy wykres:

wyk2

Jak widać linia na dole nie ma zamiaru przeciąć osi X.

W tym przypadku jest to funkcja rosnąca, ale nie zawsze tak jest.

Funkcja wykładnicza wygląda bardzo podobnie dla podstaw $a > 1$ i dla $a < 1$, jedyna różnica to w którą stronę (w lewo czy w prawo) rośnie, w zależności od a.

Zajmijmy się szczególnym przypadkiem kiedy funkcja przyjmuje wartości stałe:

$y=1^x$

Oczywiście tabelka:

tab2

Wykres to po prostu prosta równoległa do osi X:

wyk3

Ostatni przypadek to $a < 1$.

Pamiętamy, że a musi być zawsze dodatnie.

Przykład:

$y=(1/2)^x$

I ponownie tabelka:

tab3

Jak widzimy jest to funkcja odwrotna do $2^x$.

Narysujmy:

wyk4
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom