Oblicz objętość azotu cząsteczkowego odmierzonego 4.83 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do rozwiązania Oblicz objętość azotu cząsteczkowego odmierzonego - Zadanie 354: To jest chemia. Zbiór zadań. Zakres rozszerzony - strona 85
Maja

8 lutego 2018
Dziękuję :)
komentarz do zadania Oblicz objętość azotu cząsteczkowego odmierzonego - Zadanie 354: To jest chemia. Zbiór zadań. Zakres rozszerzony - strona 85
Bożena

6 stycznia 2018
Dzięki!!!!
komentarz do zadania Oblicz objętość azotu cząsteczkowego odmierzonego - Zadanie 354: To jest chemia. Zbiór zadań. Zakres rozszerzony - strona 85
Iga

9 grudnia 2017
Dziękuję :)
klasa:
Informacje
Autorzy: Stanisław Banaszkiewicz, Magdalena Kołodziejska, Elżbieta Megiel, Grażyna Świderska
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326717963
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Prostokąt

Prostokąt to czworokąt, którego wszystkie kąty wewnętrzne są kątami prostymi.

Sąsiednimi bokami nazywamy te boki, które mają wspólny wierzchołek. W prostokącie każde dwa sąsiednie boki są prostopadłe.

Przeciwległymi bokami nazywamy te boki, które nie mają punktów wspólnych. W prostokącie przeciwległe boki są równoległe oraz mają równe długości.

Odcinki, które łączą dwa przeciwległe wierzchołki (czyli wierzchołki nie należące do jednego boku) nazywamy przekątnymi. Przekątne prostokąta mają równe długości oraz przecinają się w punkcie, który jest środkiem każdej przekątnej, to znaczy punkt ten dzieli przekątne na dwie równe części.

Wymiarami prostokąta nazywamy długości dwóch sąsiednich boków. Jeden bok nazywamy długością, a drugi szerokością prostokąta.
 

prostokat

Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom