W szkolnym laboratorium chemicznym uczniowie 4.63 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

W szkolnym laboratorium chemicznym uczniowie

705
 Zadanie

706
 Zadanie
707
 Zadanie
708
 Zadanie

Doświadczenie przeprowadzano z chlorkiem amonu: `NH_4Cl` .

a) Uczeń IV wykazał, że chlorek amonu jest rozpuszczalny w wodzie i ulega reakcji hydrolizy

`NH_4Clstackrel(H_2O)(->)NH^(+)+Cl^(-)`

`NH_4^(+)+Cl^(-)+H_2OharrNH_3*H_2O+H^(+)+Cl^(-)`

`NH_4^(+)+H_2OharrNH_3*H_2O+H^(+)`

 

b) Cel doświadczenia: zbadanie charakteru chemicznego związku

Obserwacje: Z probówki wydziela się gaz o charakterystycznym, duszącym zapachu.

Równanie reakcji w formie cząsteczkowej:

`NH_4Cl+KOH->KCl+NH_3uarr+H_2O`

Równanie reakcji w formie jonowej pełnej:

`NH_4^(+)+Cl^(-)+K^(+)+OH^(-)->K^(+)+Cl^(-)+NH_3uarr+H_2O`

Równanie reakcji w formie jonowej skróconej:

`NH_4^(+)+OH^(-)->NH_3uarr+H_2O`

 

c) Uczeń III zaobserwował zmianę zabarwienia zwilżonego papierka wskaźikowego z żółtego na niebieski.

Wydzielającym sie gazem był amoniak:

Równanie reakcji hydrolizy:

`NH_3+H_2OharrNH_4^(+)+OH^-`

DYSKUSJA
Informacje
To jest chemia. Zbiór zadań. Zakres rozszerzony
Autorzy: Stanisław Banaszkiewicz, Magdalena Kołodziejska, Elżbieta Megiel, Grażyna Świderska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Mnożenie pisemne
  1. Czynniki zapisujemy jeden pod drugim wyrównując do prawej.

    mnozenie1
     
  2. Mnożymy cyfrę jedności drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymany wynik zapisujemy pod kreską, wyrównując do cyfry jedności. Gdy przy mnożeniu jednej z cyfr drugiego czynnika przez jedności, dziesiątki i setki drugiego czynnika wystąpi wynik większy od 9, to cyfrę jedności tego wyniku zapisujemy pod kreską, natomiast cyfrę dziesiątek przenosimy do dziesiątek lub setek i dodajemy go do wyniku następnego mnożenia.

    W naszym przykładzie:
    4•3=12 , czyli 2 wpisujemy pod cyframi jedności, a 1 przenosimy do dziesiątek, następnie: 4•1=4, ale uwzględniamy przeniesioną 1, czyli mamy 4+1=5 i 5 wpisujemy pod cyframi dziesiątek, następnie mamy 4•1=4 i 4 wpisujemy pod cyframi setek.

    mnozenie2
     
  3. Mnożymy kolejną cyfrę drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymamy wynik zapisujemy pod poprzednim, wyrównując do cyfry dziesiątek.

    W naszym przykładzie:
    1•3=3 i 3 zapisujemy pod cyframi dziesiątek, następnie 1•1=1 i 1 wpisujemy pod cyframi setek, oraz 1•1=1 i 1 wpisujemy pod cyframi tysięcy.

    mnozenie3
     
  4. Po wykonaniu mnożeń, otrzymane dwa wyniki dodajemy do siebie według zasad dodawania pisemnego.

    mnozenie4
     
  5. W rezultacie wykonanych kroków otrzymujemy wynik mnożenia pisemnego. Iloczyn liczby 113 oraz 14 wynosi 1572.

Zobacz także
Udostępnij zadanie