Napisz, o czym świadczą żółte plamy na skórze rąk 4.8 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Chemia

Napisz, o czym świadczą żółte plamy na skórze rąk

1
 Zadanie

2
 Zadanie

3
 Zadanie
Wykonaj doświadczenie
 Zadanie

W skórze człowieka znajduje się białko. Działając kwasem azotowym(V) na substancję zawierającą białko zabarwia się ona na żółto - reakcja ksantoproteinowa. Możemy wnioskować, że ten "nieuważny chemik" przypadkiem rozlał trochę tego kwasu na ręce, a skoro nie miał rękawic ochronnych to na skórze pojawiły się żółte plamy.

DYSKUSJA
Informacje
Ciekawa chemia 3 2014
Autorzy: Hanna Gulińska, Janina Smolińska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Udostępnij zadanie