Oblicz masy molowe związków chemicznych o podanych wzorach sumarycznych 4.58 gwiazdek na podstawie 12 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Chemia

Oblicz masy molowe związków chemicznych o podanych wzorach sumarycznych

8
 Zadanie

9
 Zadanie
10
 Zadanie
11
 Zadanie
12
 Zadanie

`M_(CO_2)=M_C+2*M_O=12g/(mol)+2*16g/(mol)=44g/(mol)`

`M_(H_2SO_4)=2*M_H+M_S+4*M_O=2*1g/(mol)+32g/(mol)+4*16g/(mol)=98g/(mol)`

`M_(Na_2O)=2*M_(Na)+M_O=2*23g/(mol)+16g/(mol)=62g/(mol)`

`M_(Ca(OH)_2)=M_(Ca)+2*M_O+2*M_H=2*40g/(mol)+2*16g/(mol)+2*1g/(mol)=74g/(mol)`

`M_(HNO_3)=M_H+M_N+3*M_O=1g/(mol)+14g/(mol)+3*16g/(mol)=63g/(mol)`

`M_(Fe_2O_3)=2*M_(Fe)+3*M_O=2*56g/(mol)+3*16g/(mol)=160g/(mol)`

DYSKUSJA
Informacje
Chemia w zadaniach i przykładach
Autorzy: Teresa Kulawik, Maria Litwin, Styka-Wlazło Szarota
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

System rzymski

System rzymski jest systemem zapisywania liczb, który w przeciwieństwie do zapisu pozycyjnego, pozwala zapisać liczby przy pomocy znaków o zawsze ustalonej wartości.

Wyróżniamy cyfry podstawowe:

  • I = 1
  • X = 10
  • C = 100
  • M = 1000

oraz cyfry pomocnicze:

  • V = 5
  • L = 50
  • D = 500

Korzystając z systemu rzymskiego liczbę naturalną przedstawiamy jako ciąg powyższych cyfr uporządkowanych od wartości największej do najmniejszej, a wartość liczby jest równa sumie wartości poszczególnych cyfr.

Przykłady:

  • XV → 10+5=15
  • XXXII → 10+10+10+1+1=32
  • CXXVII → 100+10+10+5+1+1=127
  • MDLVII → 1000+500+50+5+1+1=1557

W celu uproszczenia wielu zapisów dopuszcza się umieszczenie cyfry podstawowej o mniejszej wartości przed cyfrą o większej wartości. W takim jednak przypadku wartość mniejszej cyfry uważamy za ujemną.

Przykłady:

  • IX → -1+10=10-1=9
  • CD → -100+500=500-100=400
  • XLII → -10+50+1+1=50-10+2=42
  • CML → -100+1000+50=1000-100+50=950

Ważne jest, że w systemie rzymskim możemy zapisać maksymalnie 3 takie same cyfry podstawowe (czyli I, X, C, M) obok siebie. Cyfry pomocnicze (czyli V, L, D) nie mogą występować obok siebie.

Przykład:

  • XXXII → 10+10+10+1+1=32

  Ciekawostka

System rzymski pochodzi od wysoko rozwiniętej cywilizacji Etrusków (ok. 500 r. p.n.e.). Początkowo zapisywano liczby za pomocą pionowych kresek I,II,III,IIII,IIIII,... .

Rzymianie przejęli cyfry od Etrusków i poddali je pewnym modyfikacjom oraz udoskonaleniom, co dało początki dzisiaj znanemu systemowi rzymskiemu.

Cyfr rzymskich używano na terenie imperium aż do jego upadku w V w. n.e. W średniowieczu stały się standardowym systemem liczbowym całej łacińskiej Europy, jednak pod koniec tej epoki coraz częściej używano już cyfr arabskich, prostszych i wygodniejszych do obliczeń oraz zapisywania dużych liczb. System rzymski stopniowo wychodził z codziennego użycia, chociaż do dziś jest powszechnie znany w Europie i stosowany do wielu celów.

Zobacz także
Udostępnij zadanie