Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony (Podręcznik, Nowa Era)

Charakterystyczną cechą kręgowców jest obecność chrzęstnego lub kostnego szkieletu. 4.64 gwiazdek na podstawie 11 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Charakterystyczną cechą kręgowców jest obecność chrzęstnego lub kostnego szkieletu.

23
 Zadanie

24
 Zadanie

a)

1. PRAWDA

2. FAŁSZ (U ryb czaszka jest połączona z kręgosłupem nieruchomo, z kolei u płazów za pomocą dwóch kłykci potylicznych.)

3. PRAWDA

 

b) 

A. 5

B. 4

C. 2

D. 6

E. 3

 

c) 

  • cewka nerwowa w przednim odcinku przekształcona jest w mózgowie, a pozostała część tworzy rdzeń kręgowy
  • ciało podzielone jest na odcinki: głowę, tułów i ogon
DYSKUSJA
user profile image
Joanna

13 stycznia 2018
dzięki!!!!
user profile image
Judyta

15 listopada 2017
Dzięki za pomoc
user profile image
Bożena

3 października 2017
Dziękuję!
Informacje
Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony
Autorzy: Barbara Arciuch, Magdalena Fiałkowska-Kołek
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

14560

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Zobacz także
Udostępnij zadanie