Zwierzęta stałocieplne, w tym człowiek, utrzymują temperaturę swego ciała w określonym zakresie 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Zwierzęta stałocieplne, w tym człowiek, utrzymują temperaturę swego ciała w określonym zakresie

21
 Zadanie

22
 Zadanie

a)

Największa stabilność temperatury: człowiek, koń, królik

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do zadania Zwierzęta stałocieplne, w tym człowiek, utrzymują temperaturę swego ciała w określonym zakresie - Zadanie 21: Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony - strona 86
Alek

3 marca 2018
Dzieki za pomoc :)
opinia do odpowiedzi Zwierzęta stałocieplne, w tym człowiek, utrzymują temperaturę swego ciała w określonym zakresie - Zadanie 21: Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony - strona 86
Adrian

19 grudnia 2017
dzięki
opinia do odpowiedzi Zwierzęta stałocieplne, w tym człowiek, utrzymują temperaturę swego ciała w określonym zakresie - Zadanie 21: Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony - strona 86
Wioletta

14 października 2017
Dzieki za pomoc :)
klasa:
Informacje
Autorzy: Barbara Arciuch, Magdalena Fiałkowska-Kołek
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326717758
Autor rozwiązania
user profile

Monika

28050

Nauczyciel

Wiedza
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom