Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony (Podręcznik, Nowa Era)

Na schemacie przedstawiono cząsteczkę będącą elementem budowy pewnych związków organicznych. 4.53 gwiazdek na podstawie 15 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Na schemacie przedstawiono cząsteczkę będącą elementem budowy pewnych związków organicznych.

17
 Zadanie
18
 Zadanie

19
 Zadanie

To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Jan

17 października 2017
dzieki :):)
user profile image
Adriana

29 wrzesinia 2017
dzieki
user profile image
Angelika

26 wrzesinia 2017
Dziękuję :)
Informacje
Biologia na czasie. Maturalne karty pracy część 1. Zakres rozszerzony
Autorzy: Barbara Arciuch, Magdalena Fiałkowska-Kołek
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

12280

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej n nazywamy liczbę naturalną m, jeżeli liczba n podzieli się przez m, tzn. gdy istnieje taka liczba naturalna k, że $$n=k•m$$.

Przykład:

10 dzieli się przez 1, 2, 5 i 10, z tego wynika, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo 10=10•1
  • 2 jest dzielnikiem 10 bo 10=5•2
  • 5 jest dzielnikiem 10 bo 10=2•5
  • 10 jest dzielnikiem 10 bo 10=1•10


Jeżeli liczba naturalna m jest dzielnikiem liczby n, to liczba n jest wielokrotnością liczby m.

Przykład:
Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.
Symboliczny zapis $$m∣n$$ oznacza, że m jest dzielnikiem liczby n (lub n jest wielokrotnością liczby m). Powyższy przykład możemy zapisać jako $$2|10$$ (czytaj: 2 jest dzielnikiem 10).


Dowolna liczba naturalna n, większa od 1 (n>1), która ma tylko dwa dzielniki: 1 oraz samą siebie (czyli liczbę n) nazywamy liczbą pierwszą. Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

  Zapamiętaj

Liczba 1 nie jest liczbą pierwszą – bo ma tylko jeden dzielnik. Liczba 0 też nie jest liczbą pierwszą – bo ma nieskończenie wiele dzielników.

  Zapamiętaj

Liczbę niebędącą liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki, nazywamy liczbą złożoną. Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...

  Zapamiętaj

Liczby 1 i 0 nie są liczbami złożonymi.

  Ciekawostka

Liczba doskonała to liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej. Dotychczas znaleziono tylko 46 liczb doskonałych. Przykładem liczby doskonałej jest 6.

Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Zobacz także
Udostępnij zadanie