Porównaj różnorodność gatunkową miejskiego trawnika - Zadanie 1: Biologia na czasie 3. Zakres rozszerzony - strona 222
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Porównaj różnorodność gatunkową miejskiego trawnika 4.34 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 3 Klasa
  3. Biologia

Porównaj różnorodność gatunkową miejskiego trawnika

1
 Indywidualne

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
Zadanie indywidualne

To zadanie musi być rozwiązane indywidualnie przez każdego ucznia.

Może wymagać:

  • odniesienia się do indywidualnych doświadczeń
  • praca w grupie
  • praca na lekcji
Tego typu zadań aktualnie nie rozwiązujemy.

DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Franciszek Dubert, Marek Jurgowiak, Maria Marko-Worłowska
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326729218
Autor rozwiązania
user profile

Monika

34208

Nauczyciel

Wiedza
Działania na pierwiastkach

 

Własności pierwiastkowania: 

  1. Pierwiastek z iloczynu jest równy iloczynowi pierwiastków z tych liczb.


    Dla `a>=0 \ "i" \ b>=0` 

    `sqrt{a*b}=sqrt{a}*sqrt{b}`  


    Dla dowolnych liczb `a \ "i" \ b` mamy:

    `root{3}{a*b}=root{3}{a}*root{3}{b}` 


  2. Pierwiastek z ilorazu jest równy ilorazowi pierwiastków z tych liczb.


    Dla `a>=0 \ "i" \ b>0` mamy: 

    `sqrt{a/b}=sqrt{a}/sqrt{b}` 


    Dla dowolnej liczby `a \ "i" \ b!=0` mamy:   

    `root{3}{a/b}=root{3}{a}/root{3}{b}`  

 

Przykłady:

  • `sqrt{3600}=sqrt{36*100}=sqrt{36}*sqrt{100}=6*10=60` 

  • `root{3}{-64 \ 000}=root{3}{-64*1000}=root{3}{-64}*root{3}{1000}=-4*10=-40`   

  • `sqrt{121/49}=sqrt{121}/sqrt{49}=11/7=1 4/7` 

  • `root{3}{216/512}=root{3}{216}/root{3}{512}=6/8`   
Pojęcie pierwiastka

Pierwiastkiem kwadratowym z nieujemnej liczby a nazywamy taką nieujemną liczbę b, której kwadrat jest równy liczbie a.

Pierwiastek kwadratowy możemy nazwać również pierwiastkiem drugiego stopnia

Symbolicznie możemy zapisać to: 

`sqrt{a}=b, \ \ \ "bo" \ \ \ b^2=a`  


Pierwiastkiem sześciennym z liczby a nazywamy taką liczbę b, której sześcian (trzecia potęga) jest równy liczbie a.

Pierwiastek sześcienny możemy nazwać także pierwiastkiem trzeciego stopnia.  

Symbolicznie możemy zapisać to: 

`root{3}{a}=b,  \ \ \ "bo" \ \ \ b^3=a`  


Przykłady

  • `sqrt{25}=5, \ \ \ "bo" \ \ \ 5^2=25` 
     
  • `sqrt{81}=9, \ \ \ "bo" \ \ \ 9^2=81`    

  • `root{3}{27}=3, \ \ \ "bo" \ \ \ 3^3=27`  

  • `root{3}{64}=4, \ \ \ "bo" \ \ \ 4^3=64` 



Wykonując działania na pierwiastkach warto pamiętać o kilku własnościach:

  1. Dla `a>=0` mamy: 

    `sqrt{a^2}=a`   

    `(sqrt{a})^2=a` 

    `sqrt{a}*sqrt{a}=a` 

  2. Dla dowolnej liczby `a`  mamy: 

    `root{3}{a^3}=a` 

    `(root{3}{a})^3=a`   

    `root{3}{a}*root{3}{a}*root{3}{a}=a`  

 

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2718ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6157WIADOMOŚCI
NAPISALIŚCIE773KOMENTARZY
komentarze
... i8018razy podziękowaliście
Autorom