Określ różnice między strukturą alfa-helisy 4.67 gwiazdek na podstawie 9 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Określ różnice między strukturą alfa-helisy

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie

 

 

Struktura alfa-helisy

Struktura alfa-helisy

sposób powstawania struktury

prawoskrętne zwinięcie łańcucha polipeptydowego wokół osi

ułożenie łańcucha polipeptydowego na płaszczyźnie

powstawanie wiązań wodorowych

wiązania wodorowe powstają co cztery aminokwasy między grupami C=O i N-H

wiązania wodorowe tworzą się pomiędzy grupami CO i NH aminokwasów lężących w różnych rejonach lego samego polipeptydu, które układają się równolegle lub między odrębnymi polipeptydami

usytuowanie grup bocznych

na zewnątrz helisy

w tej samej płaszczyźnie co wiązania wodorowe

DYSKUSJA
user avatar
Leszek

3 września 2018
dzięki!
user avatar
Magda

27 grudnia 2017
dzięki!
user avatar
Kamila

14 października 2017
dzięki!!!
user avatar
Łucja

26 września 2017
Dziękuję!
klasa:
Informacje
Autorzy: Marek Guzik, Ewa Jastrzębska, Ryszard Kozik, Renata Matuszewska, Ewa Pyłka-Gutowska, Władysław Zamachowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Monika

23673

Nauczyciel

Wiedza
Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.

    Przykłady: `3/8, \ \ \ 23/36, \ \ \ 1/4, \ \ \ 0/5` 

  2. Ułamek niewłaściwy – ułamek, którego licznik jest większy od mianownika lub jemu równy. Ułamek niewłaściwy ma zawsze wartość większą od 1 lub równą 1.

    Przykłady:  `15/7, \ \ \ 3/1, \ \ \ 129/5, \ \ \ 17/17` 

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom