Zaprojektuj i uzupełnij tabelę, która 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Biologia

Zaprojektuj i uzupełnij tabelę, która

1
 Zadanie

2
 Zadanie
3
 Zadanie

 

Charakterystyka

Erytrocyty

Leukocyty

Płytki krwi

Miejsce powstawania

Szpik kostny czerwony

Szpik kostny czerwony; węzły chłonne; śledziona

Szpik kostny czerwony

Ilość w 1 µl

4,5 - 5,5 mln

4,5 - 6 tyś.

300-600 tyś.

Budowa

dwuwklęsły kształt; brak jądra komórkowego i innych organelli; czerwony kolor

zawierają jądra komórkowe; są bezbarwne; większe od erytrocytów; mają różną budowę w zależności od rodzaju

są fragmentami cytoplazmy dużych komórek szpiku; bezbarwne i różnokształtne; najmniejsze spośród wszystkich elementów morfotycznych

Długość życia

120 dni

od kilku godzin do kilkunastu lat

8-10 dni

Miejsce niszczenia

śledziona i wątroba

są “pożerane” przez makrofagi (rodzaj monocytów) - informacja dodatkowa

śledziona, wątroba

Funkcje

transport gazów oddechowych - tlenu i dwutlenku węgla

uczestniczą w reakcjach odpornościowych

uczestniczą w krzepnięciu krwi

 

DYSKUSJA
Informacje
Świat biologii 2
Autorzy: Małgorzata Kłyś, Joanna Stawarz, Wiesława Gołda, Jadwiga Wardas
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

2809

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielenie pisemne
  1. Zapisujemy dzielną, nad nią kreskę, a obok, po znaku dzielenia, dzielnik. W naszym przykładzie podzielimy liczbę 1834 przez 14, inaczej mówiąc zbadamy ile razy liczba 14 „mieści się” w liczbie 1834.

    dzielenie1
     
  2. Dzielimy pierwszą cyfrę dzielnej przez dzielnik. Jeśli liczba ta jest mniejsza od dzielnika, to bierzemy pierwsze dwie lub więcej cyfr dzielnej i dzielimy przez dzielnik. Inaczej mówiąc, w dzielnej wyznaczamy taką liczbę, którą można podzielić przez dzielnik. Wynik dzielenia zapisujemy nad kreską, a resztę z dzielenia zapisujemy pod spodem (pod dzielną).

    W naszym przykładzie w dzielnej bierzemy liczbę 18 i dzielimy ją przez 14, czyli sprawdzamy ile razy 14 zmieści się w 18. Liczba 14 zmieści się w 18 jeden raz, jedynkę piszemy nad kreską (nad ostatnią cyfrą liczby 18, czyli nad 8). Następnie wykonujemy mnożenie 1•14=14 i wynik 14 wpisujemy pod liczbą 18, oddzielamy kreską i wykonujemy odejmowanie 18-14=4 i wynik 4 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać następująco: 18÷14=1 reszty 4.

    dzielenie2
     
  3. Do wyniku odejmowania opisanego w punkcie 2, czyli do otrzymanej reszty z dzielenia dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik. Tak jak poprzednio wynik zapisujemy nad kreską, a pod spodem resztę z tego dzielenia.
    W naszym przykładzie wygląda to następująco: do 4 dopisujemy cyfrę 3 (czyli kolejną cyfrę, która znajduje się za liczbą 18) i otrzymujemy liczbę 43, którą dzielimy przez dzielnik 14. Inaczej mówiąc sprawdzamy ile razy 14 zmieści się w 43. Liczba 14 zmieści się w 43 trzy razy, czyli 3 piszemy nad kreską (za 1), a następnie wykonujemy mnożenie 3•14=42i wynik 42 zapisujemy pod liczbą 43, oddzielamy kreską i wykonujemy odejmowanie 43-42=1 i wynik 1 zapisujemy pod kreską.
    Opisane postępowanie możemy zapisać: 43÷14=3 reszty 1.

    dzielenie2
     
  4. Analogicznie jak poprzednio do otrzymanej reszty dopisujemy kolejną cyfrę dzielnej i wykonujemy dzielenie przez dzielnik.
    W naszym przykładzie:
    do 1 dopisujemy ostatnią cyfrę dzielnej, czyli 4. Otrzymujemy liczbę 14, którą dzielimy przez dzielnik 14, w wyniku otrzymujemy 1 i wpisujemy ją nad kreską (po3). Następnie wykonujemy mnożenie 1•14=14 w wynik 14 zapisujemy pod 14, oddzielamy kreską i wykonujemy odejmowanie 14-14=0.
    Opisane postępowanie możemy zapisać 14÷14=1, czyli otrzymaliśmy dzielenie bez reszty, co kończy nasze dzielenie.

    dzielenie3
     
  5. Wynik dzielenia liczby 1834 przez 14 znajduje się nad kreską, czyli otrzymujemy ostatecznie iloraz 1834÷14=131.

Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie