Energia, niezbędna do życia organizmu - Zadanie 3: Przyroda z pomysłem 5. Zeszyt ćwiczeń cz. 2 - strona 24
Przyroda
Wybierz książkę
Energia, niezbędna do życia organizmu 4.56 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Przyroda

Energia, niezbędna do życia organizmu

1
 Zadanie
2
 Zadanie

3
 Zadanie

a. układ oddechowy- dostarcza tlen do organizmu i usuwa z niego dwutlenek węgla

b. układ krwionośny-dostarcza krew do wszystkich obszarów organizmu, która jest niezbędna do życia i funkcjonowania 

c. układ pokarmowy- dostarcza organizmowi składników odżywczych niezbędnych do rozwoju, wzrostu oraz prawidłowego funkcjonowania wszystkich narządów

DYSKUSJA
opinia do rozwiązania undefined
Adriana

14 maja 2018
dzieki
komentarz do odpowiedzi undefined
Marysia

22 stycznia 2018
Dziękuję :)
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Urszula Depczyk, Bożena Sienkiewicz, Halina Binkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Monika

28123

Nauczyciel

Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $a⊥b$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $a∥b$.
     

    proste-rownlegle
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2783ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6445WIADOMOŚCI
NAPISALIŚCIE750KOMENTARZY
komentarze
... i8069razy podziękowaliście
Autorom