Uzasadnij, dlaczego podane poniżej - Zadanie 5: Przyroda z pomysłem 5. Zeszyt ćwiczeń cz. 2 - strona 23
Przyroda
Wybierz książkę
Uzasadnij, dlaczego podane poniżej 4.83 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Przyroda

Uzasadnij, dlaczego podane poniżej

3
 Zadanie
4
 Zadanie

5
 Zadanie

A. Rzęski którymi wyścielony jest nabłonek w jamie nosowej oczyszczają powietrze, co zabiega przenikaniu do układu oddechowego pyłów i drobnoustroi.

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Urszula Depczyk, Bożena Sienkiewicz, Halina Binkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Monika

28316

Nauczyciel

Wiedza
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $7 + 19 = 19 +7$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $23 - 8 = 15$, bo $8 + 15 = 23$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $15 - 7 ≠ 7 - 15$ (gdzie symbol ≠ oznacza "nie równa się").
 
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $P = a•b$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $P=a•a=a^2$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $ P=2 cm•4 cm=8 cm^2 $
    Pole tego prostokąta jest równe 8 $cm^2$.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3658ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5419WIADOMOŚCI
NAPISALIŚCIE772KOMENTARZY
komentarze
... i8207razy podziękowaliście
Autorom