Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.
Przykład:
Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.
Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.
Przykład:
Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.
I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.
Przykład:
$$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.
Przykład:
$$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.
I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.
Przykład:
$$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.
Przykład:
$$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” w liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).
Przykład: `9/4=2\1/4`
Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).