Przyroda

Przyroda z pomysłem 5. Podręcznik cz. 2 (Podręcznik, WSiP)

W jaki sposób ucho odbiera dźwięki 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Przyroda

W jaki sposób ucho odbiera dźwięki

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

Ucho poprzez małżowinę uszną pobiera dźwięki z otoczenia w postaci drgań. Drgania kanałem słuchowym są przenoszone na błonę bębenkową, później na kosteczki słuchowe i dalej do ślimaka. W ślimaku następuje przekształcenie drgań na impulsy nerwowe, stąd też nerwem prowadzone są do mózgu.

DYSKUSJA
user profile image
Aleksander

1 listopada 2017
Dziękuję!!!!
Informacje
Przyroda z pomysłem 5. Podręcznik cz. 2
Autorzy: Urszula Depczyk, Bożena Sienkiewicz, Halina Binkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

10432

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie