Wyjaśnij powiedzenie: ściany mają uszy. - Zadanie 2: Przyroda z pomysłem 5. Podręcznik cz. 2 - strona 15
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Wyjaśnij powiedzenie: ściany mają uszy. 4.56 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Przyroda

Wyjaśnij powiedzenie: ściany mają uszy.

1
 Zadanie

2
 Zadanie

3
 Zadanie

Dźwięk rozchodzi się w gazach, cieczach ale również w ciałach stałych. Wobec tego dźwięk mający swe źródło w jednym pomieszczeniu może dotrzeć do drugiego pomieszczenia- najpierw rozchodząc się w powietrzu, potem w ciele stałym(drgania z powietrza przekazywane są i rozchodzą się w ścianie), a na koniec znów w powietrzu.

DYSKUSJA
klasa:
5 szkoły podstawowej
Informacje
Autorzy: Urszula Depczyk, Bożena Sienkiewicz, Halina Binkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Monika

27054

Nauczyciel

Wiedza
Okrąg wpisany w czworokąt
W przypadku okręgów wpisanych w czoworkąty warunek zależy od długości odpowiednich boków: musi zachodzić:
$AB + CD = BC + AD$

2

Dlaczego? Jeśli poprowadzimy cztery promienie (tak jak na rysunku) - przekonamy się, że zaznaczone trójkąty są podobne, więc sumując odpowiednie odcinki otrzymjemy:

$AW + CD = AW + WB + CY + YD = AZ + BX + CX + DZ = BC + AD$

 
Wektory jako przesunięcie wykresu
Wektor jest często używany jako wielkość opisująca przesunięcie. Można mówić o przesunięciu dowolnego obiektu leżącego w przestrzeni: na przykład wykresu funkcji.

5 przesuniecie wykresu

Widać, że przesunięcie wykresu nie zależy od tego, w którym miejscu zaczepimy wektor. Jak opisać takie przesunięcie?

Załóżmy, że mamy funkcję $y = f(x)$ i chcemy jej wykres przesunąć o wektor ${v}↖{→} = [a,b]$. Aby to zrobić, rozłóżmy ${v}↖{→}$ na wektory składowe równoległe do osi i przesuńmy wykres przez każdy z nich oddzielnie (suma przesunięć będzie się równała przesunięciu przez wektor sumy).

Przesuwając wykres w pionie zmieniamy tak naprawdę jedynie wyraz wolny: jeśli na przykład ${v_y}↖{→} = [0, b]$, to nowa funkcja $f_2(x)$ będzie równa $f_2(x) = f(x) + b$.

Zastanówmy się więc, co tak naprawdę robimy przesuwając wykres w poziomie - załóżmy, że w prawo, czyli o wektor ${v_x}↖{→} = [a, 0]$ gdzie $a$ > $0$. Każdemu $x$-owi przyporządkowujemy wtedy wartość $x$-a leżącego o $a$ bliżej, np. punkt $x=3$ dostał wartość punktu $x=3-a$. Nowa funkcja będzie więc miała postać $f_2(x) = f(x-a)$.

Łącząc te dwie zmiany dowiadujemy się, że funkcja $y = f(x)$ przesunięta o wektor ${v}↖{→} = [a,b]$ będzie miała postać $y = f(x-a)+b$.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom