Przyroda

Na podstawie mapy zaplanuj wycieczkę. Na mapie 4.6 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Przyroda

Na podstawie mapy zaplanuj wycieczkę. Na mapie

1
 Zadanie

A. Trasa węgrówki ma około 11km

B. W czasie wędrówki można zwiedzić ruiny zamku, muzea etnograficzne lub  podziwiać jeziora (j. Weneckie i j. Biskupińskie), a także kolej wąskotorową.

C. Wyruszam z hotelu nad Jeziorem Weneckim. Początkowo będę podążać na wschód, następnie skręcę na południe, potem na południowy zachód i na koniec będę kierować się na południowy wschód.

DYSKUSJA
user profile image
Gość

0

2017-10-07
Dzięki!!!!
user profile image
Gość

0

2017-10-14
dzieki :):)
user profile image
Gość

0

2017-10-22
Dzięki :)
Informacje
Przyrodo, witaj! 5
Autorzy: Gromek Ewa, Kłos Ewa, Kofta Wawrzyniec
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Przeliczanie jednostek – centymetry na metry i kilometry

W praktyce ważna jest umiejętność przeliczania 1 cm na planie lub mapie na ilość metrów lub kilometrów w terenie.

  • 1 m = 100 cm
  • 1 cm = 0,01 m
  • 1 km = 1000 m = 100000 cm
  • 1 m = 0,001 km
  • 1 cm = 0,00001 km

Przykłady na przeliczanie skali mapy:

  • skala 1:2000 mówi nam, że 1 cm na mapie to 2000 cm w rzeczywistości, czyli 20 m policzmy: 2000 cm = 2000•0,01= 20 m
  • skala 1:30000 mówi nam, że 1 cm na mapie to 30000 cm w rzeczywistości, czyli 300 m policzmy: 30000 cm = 30000•0,01= 300 m
  • skala 1:500000 mówi nam, że 1 cm na mapie to 500000 cm w rzeczywistości, czyli 5 km policzmy: 500000 cm = 500000•0,00001= 5 km
  • skala 1:1000000 mówi nam, że 1 cm na mapie to 1000000 cm w rzeczywistości, czyli 10 km policzmy: 1000000 cm = 1000000•0,00001= 10 km
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie