Matematyka

Wykonaj działania. 4.6 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

`"a)" `

`2sqrt3 - 3sqrt3 + 5sqrt3 - 7sqrt3=sqrt3(2-3+5-7)=-3sqrt3`

 

`"b)"`

`4root(3)(2)+root(3)(2)-3root(3)(2)-root(3)(2)=` `root(3)(2)(4+1-3-1)=root(3)(2)`

 

`"c)"`

`3root(3)(5)-2root(3)(3)-root(3)(5)+4root(3)(2)=root(3)(5)(3-1)` `+root(3)(2)(-2+4)=2root(3)(5)+2root(3)(2)`

 

`"d)"`

`2root(3)(-2)+4-4sqrt5-3root(3)(-2)+6sqrt5=root(3)(-2)(2-3)+sqrt5(-4+6)` `=-root(3)(-2)+2sqrt5+4=root(3)(2)+2sqrt5+4`

DYSKUSJA
user profile image
Gość

2

2017-10-08
Dziękuję!!!!
user profile image
Gość

0

2017-10-22
Dzięki!!!!
Informacje
Matematyka wokół nas 2
Autorzy: A. Drążek, E.Duvnjak, Ewa Kokiernak-Jurkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Jakub

2098

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie