Matematyka

Matematyka 2001 (Podręcznik, WSiP)

Tekturowe prostopadłościenne pudełko na mleko ma wymiary 6 cm x 10 cm x17 cm 3.6 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Tekturowe prostopadłościenne pudełko na mleko ma wymiary 6 cm x 10 cm x17 cm

5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie

10
 Zadanie

11
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

`V=6cm*8cm*21cm=48cm^2*21cm=1008cm^3`

b)

`1008m^3=1008*0,001dm^3=1,008dm^3`

c)

`1008cm^3=1,008l`

d)

`1008cm^3=1008ml`

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: A.Bazyluk, J.Chodnicki, M.Dąbrowski, A.Fryska, E.Łakoma, A.Pfeiffer, P.Piskorski, W.Zawadowski, H.Sienkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu bardziej skomplikowanego działania, najważniejsze jest zachowanie kolejności wykonywania działań.

Kolejność wykonywania działań:

  1. Wykonywanie działań w nawiasach;

  2. Potęgowanie i pierwiastkowanie;

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje dzielenie lub zarówno mnożenie, jak i dzielenie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej do prawej strony).
    Przykład: $$16÷2•5=8•5=40$$;

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje odejmowanie lub zarówno dodawanie, jak i odejmowanie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej strony do prawej).
    Przykład: $$24 - 6 +2 = 18 + 2 = 20$$.

Przykład:

$$(45-9•3)-4=(45-27)-4=18-4=14 $$
 
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Zobacz także
Udostępnij zadanie