Matematyka

Nazwij pozostałe narysowane figury. Które z nich można opisać na więcej niż jeden sposób? 4.7 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Nazwij pozostałe narysowane figury. Które z nich można opisać na więcej niż jeden sposób?

1
 Zadanie
2
 Zadanie

3
 Zadanie

UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

VI . 

`3a - 1/2a ` 

VII. 

`2a - 2 *1/2a` 

VIII

`b+1/2a + a + a - b` 

`2 1/2a` 

IX. 

`2a + b + 1/2b + 1/2b - b` 

2a + b 

 

Na kilka sposobów można nazwać każdą z tych figur 

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: A.Bazyluk, J.Chodnicki, M.Dąbrowski, A.Fryska, E.Łakoma, A.Pfeiffer, P.Piskorski, W.Zawadowski, H.Sienkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Jakub

1361

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Zobacz także
Udostępnij zadanie