Matematyka

Matematyka z plusem 6. Geometria (Zeszyt ćwiczeń, GWO)

a) Oblicz obwody prostokąta, równoległoboku oraz sześciokąta. 4.53 gwiazdek na podstawie 40 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

a) Oblicz obwody prostokąta, równoległoboku oraz sześciokąta.

10
 Zadanie
11
 Zadanie

12
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

`a)` 

`"Obwód"=2*5\ cm+2*7,5\ cm=10\ cm+15\ cm=25\ cm` 

`"Obwód"=2*20\ mm+2*8,5\ cm=2*2\ cm+17\ cm=4\ cm+17\ cm=21\ cm` 

`"Obwód"=3,5\ cm+3\ cm+2\ cm+4\ cm+(2\ cm+3,5\ cm)+(3\ cm+4\ cm)=` 

`\ \ \ \ \ \ \ \ \ \ =12,5\ cm+5,5\ cm+7\ cm=18\ cm+7\ cm=25\ cm` 

 

 

`b)` 

`"Obwód"=12*4\ cm=48\ cm` 

 

`"Obwód"=2+4+2+6+2+4+6+4+4+4+4+6=48\ cm`  

 

 

 

`"Obwód"=11*17\ cm=187\ cm` 

DYSKUSJA
user profile image
Gość

6 listopada 2017
Dzięki za pomoc
user profile image
Nadia

5 listopada 2017
dzięki :):)
user profile image
Gość

23 października 2017
dzięki
user profile image
Gość

22 października 2017
dzięki
user profile image
Maja

14 października 2017
Dzięki
user profile image
Gość

9 października 2017
dziękuję bardzo mogę teraz sprawdzić czy mam dobre odpowiedzi.
user profile image
Helena

3 października 2017
Dzieki za pomoc :)
Informacje
Matematyka z plusem 6. Geometria
Autorzy: M.Dobrowolska, M.Jucewicz, P.Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Jakub

3967

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Udostępnij zadanie