Matematyka

Matematyka z plusem 2 (Zbiór zadań, GWO)

Odgadnij liczbę spełniającą równanie a) 8^4=x^12 4.61 gwiazdek na podstawie 13 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Odgadnij liczbę spełniającą równanie a) 8^4=x^12

12
 Zadanie
13
 Zadanie
14
 Zadanie
15
 Zadanie
16
 Zadanie

17
 Zadanie

18
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) `8^4=x^12`

`(2^3)^4=x^12`

`2^12=x^12`

`x=2`

b) `5^6=x^3`

`5^(2*3)=x^3`

`(5^2)^3=x^3`

`25^3=x^3`

`x=25`

c) `2^18=4^x`

`2^(2*9)=4^x`

`(2^2)^9=4^x`

`4^9=4^x`

`x=9`

d) `5^27=125^x`

`5^(3*9)=125^x`

`(5^3)^9=125^x`

`125^9=125^x`

`x=9`

e) `0.1^x=0.01^8`

`0.1^x=(0.1^2)^8`

`0.1^x=0.1^16`

`x=16`

f) `(1/2)^x=(1/4)^3`

`(1/2)^x=((1/2)^2)^3`

`(1/2)^x=(1/2)^6`

`x=6`

DYSKUSJA
user profile image
Lena

30 września 2017
Dzieki za pomoc!
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Zobacz także
Udostępnij zadanie