Matematyka

Matematyka z plusem 2 (Zbiór zadań, GWO)

Zapisz bez użycia nawiasów a) (-27)³ 4.6 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Zapisz bez użycia nawiasów a) (-27)³

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Jeśli potęgujemy liczbę ujemną i wykładnik potęgi jest liczbą parzystą, to wynik potęgowania jest liczbą dodatnią.

Jeśli potęgujemy liczbę ujemną i wykładnik potęgi jest liczbą nieparzystą, to wynik potęgowania jest liczbą ujemną.

a) rownanie matematyczne

b) rownanie matematyczne

c) rownanie matematyczne

d) rownanie matematyczne

DYSKUSJA
user avatar
Marian

21 września 2017
Dzięki za pomoc :):)
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Wielokrotności

Wielokrotność liczby otrzymamy mnożąc tę liczbę przez kolejne liczby naturalne. 

Uwaga!!!

0 jest wielokrotnością każdej liczby naturalnej. 

Każda liczba naturalna jest wielokrotnością liczby 1. 


Przykłady
:

  • wielokrotności liczby 4 to: 
    • 0, bo  `0*4=0` 
    • 4, bo  `1*4=4`  
    • 8, bo  `2*4=8`  
    • 12, bo  `3*4=12`  
    • 16, bo  `4*4=16`  
    • 20, bo  `5*4=20` , itd.  
       
  • wielokrotności liczby 8 to:
    • 0, bo  `0*8=0`  
    • 8, bo  `1*8=8`  
    • 16, bo  `2*8=16`  
    • 24, bo  `3*8=24`  
    • 32, bo  `4*8=32`  
    • 40, bo  `5*8=40`, itd.  
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom