Matematyka

Rozwiązaniem równania 32² *4² :2^7=2^x jest liczba 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

`32^2 *4^2:2^7=2^x`

`(2^5)^2*(2^2)^2:2^7=2^x`

`2^(5*2)*2^(2*2):2^7=2^x`

`2^10*2^4:2^7=2^x`

`2^(10+4):2^7=2^x`

`2^14:2^7=2^x`

`2^(14-7)=2^x`

`2^7=2^x`

`x=7`

` ` Prawidłowa jest odpowiedź C

` `

` `

Odpowiedź:

C

DYSKUSJA
Informacje
Matematyka z plusem 2
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Zobacz także
Udostępnij zadanie