Matematyka

Rodzice z dwójką dzieci chcą przeprawić się na drugą stronę rzeki. 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Rodzice z dwójką dzieci chcą przeprawić się na drugą stronę rzeki.

14
 Zadanie
15
 Zadanie
16
 Zadanie

17
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Najpierw przeprawiają się dzieci, jedno z dzieci zostaje drugie wraca, przeprawia się jeden z dorosłych, drugie dziecko wraca na drugi brzeg, przeprawiają się znów dzieci i jedno zostaje a drugie wraca po rodzica, drugi rodzic się przeprawia, drugie dziecko wraca po pierwsze i przeprawiają się obydwoje.

DYSKUSJA
user avatar
Cezary

28 kwietnia 2018
dzieki!
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201247
Autor rozwiązania
user profile

Jacek

1732

Nauczyciel

Wiedza
Mnożenie pisemne
  1. Czynniki zapisujemy jeden pod drugim wyrównując do prawej.

    mnozenie1
     
  2. Mnożymy cyfrę jedności drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymany wynik zapisujemy pod kreską, wyrównując do cyfry jedności. Gdy przy mnożeniu jednej z cyfr drugiego czynnika przez jedności, dziesiątki i setki drugiego czynnika wystąpi wynik większy od 9, to cyfrę jedności tego wyniku zapisujemy pod kreską, natomiast cyfrę dziesiątek przenosimy do dziesiątek lub setek i dodajemy go do wyniku następnego mnożenia.

    W naszym przykładzie:
    4•3=12 , czyli 2 wpisujemy pod cyframi jedności, a 1 przenosimy do dziesiątek, następnie: 4•1=4, ale uwzględniamy przeniesioną 1, czyli mamy 4+1=5 i 5 wpisujemy pod cyframi dziesiątek, następnie mamy 4•1=4 i 4 wpisujemy pod cyframi setek.

    mnozenie2
     
  3. Mnożymy kolejną cyfrę drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymamy wynik zapisujemy pod poprzednim, wyrównując do cyfry dziesiątek.

    W naszym przykładzie:
    1•3=3 i 3 zapisujemy pod cyframi dziesiątek, następnie 1•1=1 i 1 wpisujemy pod cyframi setek, oraz 1•1=1 i 1 wpisujemy pod cyframi tysięcy.

    mnozenie3
     
  4. Po wykonaniu mnożeń, otrzymane dwa wyniki dodajemy do siebie według zasad dodawania pisemnego.

    mnozenie4
     
  5. W rezultacie wykonanych kroków otrzymujemy wynik mnożenia pisemnego. Iloczyn liczby 113 oraz 14 wynosi 1572.

Liczby mieszane i ich zamiana na ułamek niewłaściwy

ulamek

Liczba mieszana składa się z części całkowitej (jest nią liczba naturalna) oraz części ułamkowej (jest nią ułamek zwykły właściwy).


Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: 

  1. Mianownik części ułamkowej mnożymy razy część całkowitą liczby mieszanej.

  2. Do otrzymanego iloczynu dodajemy licznik części ułamkowej.

Mianownik szukanego ułamka niewłaściwego jest równy mianownikowi części ułamkowej liczby mieszanej.

Przykłady: 

`3 1/4=(3*4+1)/4=13/4` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom