Matematyka

Przeczytaj ciekawostkę. 4.29 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

a) 

`Obw.=2*(12cm+16cm+8cm+6cm)=2*42cm=84cm`

 

b)

Dane:

 

Długość ramienia

 

Długość wysokości

 

 

 

Z twierdzenia Pitagorasa obliczamy długość podstawy:

`(1/2a)^2+h^2=b^2`

`(1/2a)^2=29^2-21^2=841-441=400`

`1/2a=sqrt(400)`

`1/2a=20`

`a=40cm`

Pole trójkąta:

`P=1/2*a*h=1/2*40cm*21cm=20cm*21m=420cm^2`

Pole tego samego trójkąta można policzyć z wzoru:

`P=1/2(a+2b)*r`

P=gdzie r jest promieniem okręgu wpisanego w pole

( wzór dokładniej P=pr gdzie p to połowa obwodu trójkąta)

 

Mamy więc:

`1/2*(40+2*29)*r=420`

`1/2*(40+58)*r=420\ \ \ |*2`

`98r=840\ \ \ |:98`

 

`r=840/98 `

 

` r=840/98=420/49=90/7=8 4/7cm`

 

c)

promień okręgu wpisanego w:

`r=(2P)/(a+b+c)`

`a=6cm`

`b=8cm`

`a^2+b^2=c^2`

`c^2=6^2+8^2`

`c^2=36+64`

`C^2=100`

`c=sqrt(100)`

`c=10cm`

`P=1/2*a*b=1/2*6*8=3*8=24cm^2`

`r=(2*24cm^2)/(6cm+8cm+10c.)=(2*strike24^1cm^2)/(strike24^1cm)=2cm`

 

DYSKUSJA
Informacje
Matematyka z plusem 3
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Zobacz także
Udostępnij zadanie