Matematyka

Matematyka z plusem 6. Liczby i wyrażenia algebraiczne część II (Zeszyt ćwiczeń, GWO)

Zaznacz na osi liczbowej liczbę x i liczbę do niej przeciwną 4.52 gwiazdek na podstawie 25 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Zaznacz na osi liczbowej liczbę x i liczbę do niej przeciwną

12
 Zadanie
13
 Zadanie
14
 Zadanie

15
 Zadanie

16
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

DYSKUSJA
user profile image
Pio Bar

21-03-2017
najlepsza strona ever! :0
user profile image
Tomasz Bielecki

6

10-03-2017
thanks
Informacje
Matematyka z plusem 6. Liczby i wyrażenia algebraiczne część II
Autorzy: Dobrowolska Małgorzata, Agnieszka Demby
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Jakub

3945

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie