Matematyka

Tomek pisał dyktando, w którym było 60 trudnych wyrazów. Okazało się, że 80% spośród nich napisał 4.51 gwiazdek na podstawie 41 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Tomek pisał dyktando, w którym było 60 trudnych wyrazów. Okazało się, że 80% spośród nich napisał

13
 Zadanie

14
 Zadanie

15
 Zadanie
16
 Zadanie
17
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Wszystkich trudnych wyrazów było 60.

80% tych wyrazów Tomek napisał z błędem, zatem poprawnie napisał 20% trudnych wyrazów (100%-80%=20%).

 


Odpowiedź
Tomek napisał 12 wyrazów prawidłowo.

DYSKUSJA
user avatar
Konrad

28 stycznia 2018
dzięki!!!!
user avatar
ania_zur

8 marca 2017
super
klasa:
Informacje
Autorzy: Dobrowolska Małgorzata, Agnieszka Demby
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374202435
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom