Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Doświadczenie losowe polega na dwukrotnym rzucie monetą. Co jest bardziej prawdopodobne: 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Doświadczenie losowe polega na dwukrotnym rzucie monetą. Co jest bardziej prawdopodobne:

5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie

10
 Zadanie

11
 Zadanie
12
 Zadanie

Zbiór zdarzeń elementarnych posiada cztery elementy (Ω {{O,O}, {O,R}, {R,O}, {R,R}}). 

Zdarzenie (oznaczmy jako A) polegające na wylosowaniu tych samych wyników ma 2 elementy - {O,O} i {R,R}. Zdarzenie (oznaczmy jako B) polegające na wylosowaniu dwóch różnych wyników również ma 2 elementy - {O,R} i {R,O}. Prawdopodobieństwa obydwu zdarzeń są zatem takie same i wynoszą:

`"P"("A")=bar"A"/barOmega=2/4=1/2="P"("B")`

Odpowiedź:

Prawdziwa jest odpowiedź B.

DYSKUSJA
Informacje
Matematyka wokół nas 3
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Obwód

Obwód wielokąta to suma długości boków danego wielokąta.

  1. Obwód prostokąta – dodajemy długości dwóch dłuższych boków i dwóch krótszych.

    Zatem prostokąt o wymiarach a i b ma obwód równy:
    Obwód prostokąta: $$Ob = 2•a+ 2•b$$.

    Przykład: Policzmy obwód prostokąta, którego boki mają długości 6 cm i 8 cm.

    ob_kwadrat

    $$Ob=2•8cm+2•6cm=16cm+12cm=28cm$$
     

  2. Obwód kwadratu – dodajemy długości czterech identycznych boków, zatem wystarczy pomnożyć długość boku przez cztery.

    Zatem kwadrat o boku długości a ma obwód równy:
    Obwód kwadratu: $$Ob = 4•a$$.

    Przykład: Policzmy obwód kwadratu o boku długości 12 cm.

    ob_prostokat

    $$Ob=4•12cm=48cm$$

 
Zobacz także
Udostępnij zadanie