Matematyka

Matematyka z plusem 6 (Podręcznik, GWO)

Spróbuj oszacować podane wielkości 4.75 gwiazdek na podstawie 16 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Spróbuj oszacować podane wielkości

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

- długość stopy: 24cm

- grubość kartki w zeszycie: 0,1mm

- długość ziarna pszenicy: 5mm

- odległość od domu do szkoły: 100m

- wysokość budynku szkolnego: 9m

- odległość od Bałtyku do Tatr: 750km

DYSKUSJA
user profile image
Czesława

30 października 2017
Dzięki :)
user profile image
Dominik

5 października 2017
Dzieki za pomoc
Informacje
Matematyka z plusem 6
Autorzy: M.Dobrowolska , M.Jucewicz, M.Karpiński, P.Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Kasia

3652

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie